【題目】在平面直角坐標(biāo)系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo)
(2)已知D.E分別為線段OC.OB上的點(diǎn),OD=5,OE=2BE,直線DE交x軸于點(diǎn)F,求直線DE的解析式
(3)在(2)的條件下,點(diǎn)M是直線DE上的一點(diǎn),在x軸上方是否存在另一個(gè)點(diǎn)N,使以O.D.M.N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
【答案】(1)B(3,6) (2) y=-x+5 (3) 存在N1 (4,8) N2 (-5,2.5)N3(-2,)
【解析】分析:(1)作BH⊥x軸于點(diǎn)H,則四邊形OHBC為矩形,則OH=CB=3,進(jìn)而可求得AH的長(zhǎng),在Rt△ABH中,根據(jù)勾股定理即可求出BH的長(zhǎng),由此可得B點(diǎn)坐標(biāo);
(2)作EG⊥x軸于點(diǎn)G,則EG∥BH,易得根據(jù)相似三角形的對(duì)應(yīng)邊成比例可求出EG、OG的長(zhǎng),即可得到E點(diǎn)的坐標(biāo),進(jìn)而可用待定系數(shù)法求出直線DE的解析式;
(3)此題應(yīng)分情況討論:
①以OD、ON為邊的菱形ODMN,根據(jù)直線DE的解析式可求出F點(diǎn)的坐標(biāo),即可得到OF的長(zhǎng);過(guò)M作 軸于P,通過(guò)構(gòu)建的相似三角形可求出M點(diǎn)的坐標(biāo),將M點(diǎn)向下平移OD個(gè)單位即可得到N點(diǎn)的坐標(biāo);
②以OD、OM為邊的菱形ODNM,此時(shí)MN∥y軸,延長(zhǎng)NM交x軸于P,可根據(jù)直線DE的解析式用未知數(shù)設(shè)出M點(diǎn)的坐標(biāo),進(jìn)而可在中,由勾股定理求出M點(diǎn)的坐標(biāo),將M點(diǎn)向上平移OD個(gè)單位即可得到N點(diǎn)的坐標(biāo);
③以OD為對(duì)角線的菱形OMCN,根據(jù)菱形對(duì)角線互相垂直平分的性質(zhì)即可求得M、N的縱坐標(biāo),將M點(diǎn)縱坐標(biāo)代入直線DE的解析式中即可求出M點(diǎn)坐標(biāo),而M、N關(guān)于y軸對(duì)稱,由此可得到N點(diǎn)的坐標(biāo).
詳解:(1)作BH⊥x軸于點(diǎn)H,則四邊形OHBC為矩形,
∴OH=CB=3,
∴AH=OAOH=63=3,
在Rt△ABH中,
∴點(diǎn)B的坐標(biāo)為(3,6);
(2)作EG⊥x軸于點(diǎn)G,則EG∥BH,
∴△OEG∽△OBH,
∴
又∵OE=2EB,
∴ ∴
∴OG=2,EG=4,
∴點(diǎn)E的坐標(biāo)為(2,4),
又∵點(diǎn)D的坐標(biāo)為(0,5),
設(shè)直線DE的解析式為y=kx+b,
則
解得
∴直線DE的解析式為:
(3)答:存在;
①如圖1,當(dāng)OD=DM=MN=NO=5時(shí),四邊形ODMN為菱形.作MP⊥y軸于點(diǎn)P,則MP∥x軸,MPD∽△FOD
∴
又∵當(dāng)y=0時(shí),
解得x=10,
∴F點(diǎn)的坐標(biāo)為(10,0),
∴OF=10,
在Rt△ODF中,
∴
∴
∴點(diǎn)M的坐標(biāo)為
∴點(diǎn)N的坐標(biāo)為
②如圖2,當(dāng)OD=DN=NM=MO=5時(shí),四邊形ODNM為菱形,延長(zhǎng)NM交x軸于點(diǎn)P,則MP⊥x軸.
∵點(diǎn)M在直線上,
∴設(shè)M點(diǎn)坐標(biāo)為
在Rt△OPM中,
∴
解得: (舍去),
∴點(diǎn)M的坐標(biāo)為(4,3),
∴點(diǎn)N的坐標(biāo)為(4,8);
③如圖3,當(dāng)OM=MD=DN=NO時(shí),四邊形OMDN為菱形,連接NM,交OD于點(diǎn)P,則NM與OD互相垂直平分,
∴
∴
∴
∴
∴點(diǎn)N的坐標(biāo)為
綜上所述,x軸上方的點(diǎn)N有三個(gè),分別為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形紙片ABCD中,AB=3,將紙片沿對(duì)角線AC對(duì)折,BC邊與AD邊交于點(diǎn)E,此時(shí),△CDE恰為等邊三角形,則圖中重疊部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=110°,求∠ABE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)的坐標(biāo)為.
①把向上平移5個(gè)單位后得到對(duì)應(yīng)的,畫(huà)出,并寫(xiě)出的坐標(biāo);
②以原點(diǎn)為對(duì)稱中心,畫(huà)出與關(guān)于原點(diǎn)對(duì)稱的,并寫(xiě)出點(diǎn)的坐標(biāo).
③以原點(diǎn)O為旋轉(zhuǎn)中心,畫(huà)出把順時(shí)針旋轉(zhuǎn)90°的圖形△A3B3C3,并寫(xiě)出C3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB=AC,∠A=36°,AB的垂直平分線交AC于D,則下列結(jié)論:①∠C=72°;②BD是∠ABC的平分線;③△ABD是等腰三角形;④△BCD是等腰三角形,其中正確的有____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知代數(shù)式A=x2+3xy+x﹣12,B=2x2﹣xy+4y﹣1
(1)當(dāng)x=y=﹣2時(shí),求2A﹣B的值;
(2)若2A﹣B的值與y的取值無(wú)關(guān),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠O=30°,點(diǎn)B是OM邊上的一個(gè)點(diǎn)光源,在邊ON上放一平面鏡.光線BC經(jīng)
過(guò)平面鏡反射后,反射光線與邊OM的交點(diǎn)記為E,則△OCE是等腰三角形的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 3個(gè)以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為緩解“停車難”問(wèn)題,某單位擬建造地下停車庫(kù),建筑設(shè)計(jì)師提供了該地下停車庫(kù)的設(shè)計(jì)示意圖。按規(guī)定,地下停車庫(kù)坡道口上方要張貼限高標(biāo)志,以便告知停車人車輛能否安全駛?cè)搿?/span>(其中AB=9m,BC=0.5m)為標(biāo)明限高,請(qǐng)你根據(jù)該圖計(jì)算CE。(精確到0.1m)(參考數(shù)值,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過(guò)點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線.
(2)過(guò)點(diǎn)E作EH⊥AB于點(diǎn)H,求證:CD=HF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com