【題目】如圖,小明想要測(cè)量學(xué)校操場(chǎng)上旗桿的高度,他作了如下操作:(1)在點(diǎn)處放置測(cè)角儀,測(cè)得旗桿頂?shù)难鼋?/span>;(2)量得測(cè)角儀的高度;(3)量得測(cè)角儀到旗桿的水平距離.利用銳角三角函數(shù)解直角三角形的知識(shí),旗桿的高度可表示為(

A.B.C.D.

【答案】A

【解析】

延長(zhǎng)CEABF,得四邊形CDBF為矩形,故CF=DB=b,FB=CD=a,在直角三角形ACF中,利用CF的長(zhǎng)和已知的角的度數(shù),利用正切函數(shù)可求得AF的長(zhǎng),從而可求出旗桿AB的長(zhǎng).

延長(zhǎng)CEABF,如圖,

根據(jù)題意得,四邊形CDBF為矩形,

CF=DB=b,FB=CD=a

RtACF中,∠ACF=αCF=b,

tanACF=

AF=,

AB=AF+BF=,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形、、按如圖所示的方式放置,點(diǎn)、、和點(diǎn)、、、分別在直線軸上,則點(diǎn)的坐標(biāo)是__________.(答案不需要化簡(jiǎn))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)PAB延長(zhǎng)線上一點(diǎn),連接CP

(1)如圖1,若∠PCB=∠A

①求證:直線PC是⊙O的切線;

②若CPCAOA2,求CP的長(zhǎng);

(2)如圖2,若點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)NMNMC9,求BM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(20)B(0、﹣4)x軸交于另一點(diǎn)C,連接BC

1)求拋物線的解析式.

2)如圖,P是第一象限內(nèi)拋物線上一點(diǎn),且,求P點(diǎn)坐標(biāo).

3)在拋物線上是否存在點(diǎn)D,直線BDx軸于點(diǎn)E,使ABE與以ABC,E中的三點(diǎn)為頂點(diǎn)的三角形相似(不重合)?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】風(fēng)能作為一種清潔能源越來(lái)越受到世界各國(guó)的重視,我省多地結(jié)合自身地理優(yōu)勢(shì)架設(shè)風(fēng)力發(fā)電機(jī)利用風(fēng)能發(fā)電.王芳和李華假期去大理巍山游玩,看見風(fēng)電場(chǎng)的各個(gè)山頭上布滿了大大小小的風(fēng)力發(fā)電機(jī),好奇的想知道風(fēng)力發(fā)電機(jī)塔架的高度.如圖,王芳站在坡度,坡面長(zhǎng)的斜坡的底部點(diǎn)測(cè)得點(diǎn)與塔底點(diǎn)的距離為,此時(shí),李華在坡頂點(diǎn)測(cè)得輪轂點(diǎn)的仰角,請(qǐng)根據(jù)測(cè)量結(jié)果幫他們計(jì)算風(fēng)力發(fā)電機(jī)塔架的高度.(結(jié)果精確到,參考數(shù)據(jù),,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店代理銷售一種水果,六月份的銷售利潤(rùn)(元)與銷售量之間函數(shù)關(guān)系的圖像如圖中折線所示.請(qǐng)你根據(jù)圖像及這種水果的相關(guān)銷售記錄提供的信息,解答下列問題:

日期

銷售記錄

61

庫(kù)存,成本價(jià)8/,售價(jià)10/(除了促銷降價(jià),其他時(shí)間售價(jià)保持不變).

69

61日至今,一共售出

610、11

這兩天以成本價(jià)促銷,之后售價(jià)恢復(fù)到10/

612

補(bǔ)充進(jìn)貨,成本價(jià)8.5/

630

水果全部售完,一共獲利1200元.

1)截止到69日,該商店銷售這種水果一共獲利多少元?

2)求圖像中線段所在直線對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BCD90°,BCDC,直線PQ經(jīng)過(guò)點(diǎn)D.設(shè)∠PDCα45°α135°),BAPQ于點(diǎn)A,將射線CA繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,與直線PQ交于點(diǎn)E

1)判斷:∠ABC   PDC(填);

2)猜想△ACE的形狀,并說(shuō)明理由;

3)若△ABC的外心在其內(nèi)部(不含邊界),直接寫出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù) y=ax2+bx﹣(a+b)(a,b 是常數(shù),a≠0).

(1)判斷該二次函數(shù)圖象與 x 軸的交點(diǎn)的個(gè)數(shù),說(shuō)明理由.

(2)若該二次函數(shù)圖象經(jīng)過(guò) A(﹣1,4),B(0,﹣1),C(1,1)三個(gè)點(diǎn)中的其中兩個(gè)點(diǎn),求該二次函數(shù)的表達(dá)式.

(3) a+b<0,點(diǎn) P(2,m)(m>0)在該二次函數(shù)圖象上,求證:a>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將函數(shù)為常數(shù))的圖象記為圖象與直線的交點(diǎn)坐標(biāo)為

1)若點(diǎn)在圖象上,求的值;

2)求的最小值;

3)當(dāng)直線的圖象與函數(shù)為常數(shù))的圖像只有一個(gè)公共點(diǎn)時(shí),求的取值范圍;

4)若點(diǎn)在圖象上,且點(diǎn)的橫坐標(biāo)為點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn).當(dāng)點(diǎn)不在坐標(biāo)軸上時(shí),以點(diǎn)為頂點(diǎn)構(gòu)造矩形使點(diǎn)落在軸上.當(dāng)圖象與矩形的邊有兩個(gè)公共點(diǎn)時(shí),直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案