精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,直線l1:y=x與直線l2交點A的橫坐標為2,將直線l1沿y軸向下平移4個單位長度,得到直線l3,直線l3y軸交于點B,與直線l2交于點C,點C的縱坐標為﹣2.直線l2y軸交于點D.

(1)求直線l2的解析式;

(2)求△BDC的面積.

【答案】直線l2的解析式為y=﹣x+4;(2)16.

【解析】

(1)把x=2代入y=x,得y=1,求出A(2,1).根據平移規(guī)律得出直線l3的解析式為y=x-4,求出B(0,-4)、C(4,-2).設直線l2的解析式為y=kx+b,將A、C兩點的坐標代入,利用待定系數法即可求出直線l2的解析式;

(2)根據直線l2的解析式求出D(0,4),得出BD=8,再利用三角形的面積公式即可求出BDC的面積.

(1)把x=2代入y=x,得y=1,

A的坐標為(2,1).

∵將直線l1沿y軸向下平移4個單位長度,得到直線l3,

∴直線l3的解析式為y=x-4,

x=0時,y=-4,

B(0,-4).

y=-2代入y=x-4,得x=4,

∴點C的坐標為(4,-2).

設直線l2的解析式為y=kx+b,

∵直線l2A(2,1)、C(4,-2),

,解得,

∴直線l2的解析式為y=-x+4;

(2)y=-x+4,

x=0時,y=4,

D(0,4).

B(0,-4),

BD=8,

∴△BDC的面積=×8×4=16.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使ADE=30°.

(1)求證:ABD∽△DCE;

(2)設BD=x,AE=y,求y關于x的函數關系式并寫出自變量x的取值范圍;

(3)當ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(問題情境)如圖①,在△ABC中,若AB10,AC6,求BC邊上的中線AD的取值范圍.

1)(問題解決)延長AD到點E使DEAD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷出中線AD的取值范圍是   

(反思感悟)解題時,條件中若出現“中點”、“中線”字樣,可以考慮構造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同個三角形中,從而解決問題.

2)(嘗試應用)如圖②,△ABC中,∠BAC90°,ADBC邊上的中線,試猜想線段AB,ACAD之間的數量關系,并說明理由.

3)(拓展延伸)如圖③,△ABC中,∠BAC90°,DBC的中點,DMDN,DMAB于點MDNAC于點N,連接MN.當BM4MN5,AC6時,請直接寫出中線AD的取值范圍.(溫馨提示:如果設直角三角形的兩條直角邊長度分別是ab,斜邊長度是c,那么可以用數學語言表達三邊關系,a2+b2c2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( 。

A. 2 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠E=F=90°,∠B=C,AE=AF,給出的結論:①∠1=2;②BE=CF;③△CAN≌△BMA;CD=DN,;其中正確的結論是___________________________。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=﹣x2x+x軸交于點A,B(點A在點B的左邊),與y軸交于點C,點D是該拋物線的頂點.

(1)如圖1,連接CD,求線段CD的長;

(2)如圖2,點P是直線AC上方拋物線上一點,PFx軸于點F,PF與線段AC交于點E;將線段OB沿x軸左右平移,線段OB的對應線段是O1B1,當PE+EC的值最大時,求四邊形PO1B1C周長的最小值,并求出對應的點O1的坐標;

(3)如圖3,點H是線段AB的中點,連接CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點B2旋轉一周在旋轉過程中,點O2,C的對應點分別是點O3,C1,直線O3C1分別與直線AC,x軸交于點M,N.那么,在△O2B2C的整個旋轉過程中,是否存在恰當的位置,使△AMN是以MN為腰的等腰三角形?若存在,請直接寫出所有符合條件的線段O2M的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中AD是A的外角平分線,P是AD上一動點且不與點A、D重合,記PB+PC=a,AB+AC=b,則a、b的大小關系是(

Aa>b Ba=b Ca<b D不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,在RtABC中,∠ACB=90°AE平分∠BACBC于點E,DAC上的點,BE=DE

1)求證:∠B+EDA=180°

2)求 的值。.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于二次函數y=x2+mx+1,當0x≤2時的函數值總是非負數,則實數m的取值范圍為( 。

A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4m≥﹣2

查看答案和解析>>

同步練習冊答案