精英家教網 > 初中數學 > 題目詳情

【題目】如圖,ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( 。

A. 2 B. C. D.

【答案】B

【解析】

連接OD,得RtOAD,由∠A=30°,AD=2,可求出OD、AO的長;由BD平分∠ABC,OB=OD可得OD BC間的位置關系,根據平行線分線段成比例定理,得結論.

連接OD

OD是⊙O的半徑,AC是⊙O的切線,點D是切點,

ODAC

RtAOD中,∵∠A=30°,AD=2,

OD=OB=2,AO=4,

∴∠ODB=OBD,又∵BD平分∠ABC,

∴∠OBD=CBD,

∴∠ODB=CBD,

ODCB,

,,

CD=

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,某中學校園內有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,學校計劃在中間留一塊邊長為(a+b)米的正方形地塊修建一座雕像,然后將陰影部分進行綠化.

1)求綠化的面積.(用含a、b的代數式表示)

2)當a2,b4時,求綠化的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理解題:

定義:如果一個數的平方等于-1,記為=-1,這個數i叫做虛數單位,把形如abi (a,b為實數)的數叫做復數,其中a叫這個復數的實部,b叫做這個復數的虛部.它的加,減,乘法運算與整式的加,減,乘法運算類似.例如,計算:

(1i )(23i )(12)(13)i32i

(1i )×(3i )1×3ii3(13)i142i;

根據以上信息,完成下列問題:

1)填空:_______,________________;

2)計算:(2i )×(13i )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內,CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結果精確到0.1米).(參考數據:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF

1)求證:四邊形CEDF是平行四邊形;

2AE= cm時,四邊形CEDF是矩形;

AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將BCD沿直線CD翻折至ECD的位置,連接AE.若DEAC,計算AE的長度等于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1:y=x與直線l2交點A的橫坐標為2,將直線l1沿y軸向下平移4個單位長度,得到直線l3,直線l3y軸交于點B,與直線l2交于點C,點C的縱坐標為﹣2.直線l2y軸交于點D.

(1)求直線l2的解析式;

(2)求△BDC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點D、E.

(1)若∠A = 40°,求∠DCB的度數.

(2)若AE=4,△DCB的周長為13,求△ABC的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC 中,記∠A=x 度,回答下列問題:

1)圖中共有三角形 個.

2)若 BD,CE ABC 的角平分線,則∠BHC= 度(結果用含 x 的代數式

表示),并證明你的結論.

3)若 BD,CE ABC 的高線,則∠BHC= 度(結果用含 x 的代數式表示),并證明你的結論.

查看答案和解析>>

同步練習冊答案