【題目】已知:如圖,等邊三角形ABC中,DE分別是BC、AC上的點,且AE=CD,

1)求證:AD=BE.

2)求:∠BFD的度數(shù).

【答案】1)詳見解析;(260°.

【解析】

1)根據(jù)等邊三角形各邊長相等的性質(zhì)可得AB=AC,易證ABE≌△CAD可得AD=BE;

2)根據(jù)全等三角形對應(yīng)角相等可得∠ABE=CAD,進而根據(jù)∠BFD=BAD+ABE即可求∠BFD的度數(shù).

(1)證明:∵△ABC是等邊三角形,

∴∠BAC=C=60°,AB=CA,

ABECAD

∴△ABE≌△CAD(SAS),

AD=BE(全等三角形對應(yīng)邊相等);

(2)∵△ABE≌△CAD(已證)

∴∠ABE=CAD(全等三角形對應(yīng)角相等),

又∵∠BFD=BAD+ABE,

∴∠BFD=BAD+CAD=BAC,

又∠BAC=60°

∴∠BFD=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長城汽車銷售公司5月份銷售某種型號汽車,當月該型號汽車的進價為30萬元/輛,若當月銷售量超過5輛時,每多售出1輛,所有售出的汽車進價均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會突破30臺.

1)設(shè)當月該型號汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實際進價為y萬元/輛,求yx的函數(shù)關(guān)系式;

2)已知該型號汽車的銷售價為32萬元/輛,公司計劃當月銷售利潤45萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長線于點POF∥BCACACE,交PC于點F,連接AF

1)判斷AF⊙O的位置關(guān)系并說明理由;

2)若⊙O的半徑為4AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)海書店購一批故事書進行銷售,其進價為每本40元,如果按每本故事書50元進行出售,每月可以售出500本故事書,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),若每本故事書漲價1元,則故事書的銷量每月減少20.

(1)若學(xué)海書店要保證每月銷售此種故事書盈利6000元,同時又要使購書者得到實惠,則每本故事書需漲價多少元;

(2)若使該故事書的月銷量不低于300本,則每本故事書的售價應(yīng)不高于多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙OD

1)求BC的長.

2)連接ADBD,判斷ABD的形狀,說明理由.并求BD的長.

3)求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在國家政策的宏觀調(diào)控下,某市的商品房成交均價由今年3月份的14 000/m2下降到5月份的12 600/m2.

(1)4,5兩月平均每月降價的百分率約是多少?(參考數(shù)據(jù):≈0.95)

(2)如果房價繼續(xù)跌落,按此降價的百分率,你預(yù)測到7月份該市的商品房成交均價是否會跌跛10 000/m2?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)yax+ba,b為常數(shù),a≠0)的圖象與x軸,y軸分別交于點A,B,且與反比例函數(shù)yk為常數(shù),k≠0)的圖象在第二象限內(nèi)交于點C,作CDx軸于,若OAODOB3

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)觀察圖象直接寫出不等式0ax+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料:

對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J. Nplcr,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學(xué)家歐拉(Evlcr,1707-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.

對數(shù)的定義:一般地,若,那么叫做以為底的對數(shù),記作:.比如指數(shù)式可以轉(zhuǎn)化為,對數(shù)式可以轉(zhuǎn)化為.

我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):;理由如下:

設(shè),,則

,由對數(shù)的定義得

又∵

解決以下問題:

1)將指數(shù)轉(zhuǎn)化為對數(shù)式______;

2)證明

3)拓展運用:計算______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點A、Dx軸的正半軸上,點Cy軸的正半軸上,點FAB上,點B,E在反比例函數(shù)y的圖象上,OA1,OC6,試求出正方形ADEF的邊長.

查看答案和解析>>

同步練習(xí)冊答案