【題目】如圖,已知拋物線經過點、,且與軸交于點,拋物線的頂點為,連接,點是線段上的一個動點(不與、)重合.
(1)求拋物線的解析式,并寫出頂點的坐標;
(2)過點作軸于點,求面積的最大值及取得最大值時點的坐標;
(3)在(2)的條件下,若點是軸上一動點,點是拋物線上一動點,試判斷是否存在這樣的點,使得以點,,,為頂點的四邊形是平行四邊若存在,請直接寫出點的坐標:若不存在,請說明理由.
【答案】(1),D的坐標為(1,4);(2)當m=時 △BPE的面積取得最大值為,P的坐標是(,3);(3)存在,M點的坐標為;;;;;
【解析】
(1)先根據拋物線經過A(-1,0)B(3,0)兩點,分別求出a、b的值,再代入拋物線即可求出二次函數的解析式并得出頂點的坐標;
(2)先設出BD解析式y=kx+b,再把B、D兩點坐標代入求出k、b的值,得出BD解析式,再根據面積公式即可求出最大值以及點的坐標;
(3)根據題意利用平行四邊形的性質進行分析求值,注意分類討論.
解:(1)∵二次函數y=ax2+bx+3經過點A(﹣1,0)、B(3,0)
∴
所以二次函數的解析式為:
D的坐標為(1,4)
(2)設BD的解析式為y=kx+b
∵過點B(3,0),D(1,4)
∴解得
BD的解析式為span>y = -2x+6
設P(m,)
PE⊥y軸于點E
∴ △BPE的PE邊上的高h=
S△BPE=×PE×h
=m()
=
=
∵a=-1<0 當m=時 △BPE的面積取得最大值為
當m=時,y=-2×+6=3
P的坐標是(,3)
(3)存在這樣的點,使得以點,,,為頂點的四邊形是平行四邊形,
當點,,,為頂點的四邊形是平行四邊形,可得BM平行于PN,則有N點縱坐標等于P點縱坐標,把y=3代入求出N的坐標(0,3)或(2,3),
當N的坐標(0,3)或(2,3)時,根據平行四邊形性質求得M點的坐標為。,;
當BP平行于MN時,根據平行四邊形性質求得M點的坐標為;;.
M點的坐標為:;;;;.
科目:初中數學 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,坡CD的坡度i=1:,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某產品每件成本10元,試銷階段每件產品的銷售單價x(元/件)與每天銷售量y(件)之間的關系如下表.
x(元/件) | 15 | 18 | 20 | 22 | … |
y(件) | 250 | 220 | 200 | 180 | … |
(1)直接寫出:y與x之間的函數關系 ;
(2)按照這樣的銷售規(guī)律,設每天銷售利潤為w(元)即(銷售單價﹣成本價)x每天銷售量;求出w(元)與銷售單價x(元/件)之間的函數關系;
(3)銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點D,E是的中點,連接AE交BC于點F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坐標系中放置一菱形,已知,,先將菱形沿軸的正方向無滑動翻轉,每次翻轉,連續(xù)翻轉2019次,點的落點依次為,,,…,則的坐標為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是方城縣潘河的某一段,現要估算河的寬度(即河兩岸相對的兩點A、B間的距離),可以按如下步驟操作:①先在河的對岸選定一個目標作為點A;②再在河的這一邊選定點B和點C,使AB⊥BC;③再選定點E,使EC⊥BC,然后用視線確定BC和AE的交點D.
(1)用皮尺測得BC=177米,DC=61米,EC=50米,求河的寬度AB;(精確到0.1米)
(2)請用所學過的知識設計一種測量旗桿高度AB的方案.
要求:①畫出示意圖,所測長度用a、b、c等表示,直接標注在圖中線段上;
②不要求寫操作步驟;③結合所測數據直接用含a、b、c等字母的式子表示出旗桿高度AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+5經過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.
①當點P在直線BC的下方運動時,求△PBC的面積的最大值;
②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勘測隊按實際需要構建了平面直角坐標系,并標示了A,B,C三地的坐標,數據如圖(單位:km).筆直鐵路經過A,B兩地.
(1)A,B間的距離為______km;
(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com