【題目】如圖,在平面直角坐標系中,過點C(0,6)的直線AC與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動,試解決下列問題:
(1)求直線AC的解析式;
(2)求△OAC的面積;
(3)是否存在點M、使△OMC的面積是△OAC的面積的?若存在,求出此時點M的坐標;若不存在,請說明理由?
【答案】(1)y=x+6;(2)12;(3)(1,)或(1,5)或(1,7).
【解析】
(1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)求得C的坐標,即OC的長,利用三角形的面積公式即可求解;
(3)當△OMC的面積是△OAC的面積的時,根據(jù)面積公式即可求得M的橫坐標,然后代入解析式即可求得M的坐標.
解:(1)設直線AB的解析式是y=kx+b,
根據(jù)題意得:,
解得:,
則直線的解析式是:y=x+6;
(2)在y=x+6中,令x=0,解得:y=6,
;
(3)設OA的解析式是y=mx,則4m=2,
解得:m=,
則直線的解析式是:y=x,
當△OMC的面積是△OAC的面積的時,M的橫坐標是×4=1,
在y=x中,當x=1時,y=,則M的坐標是(1,);
在y=x+6中,x=1則y=5,則M的坐標是(1,5).
則M的坐標是:(1,)或(1,5).
當M的橫坐標是:1,
在y=x+6中,當x=1時,y=7,則M的坐標是(1,7);
綜上所述:M的坐標是:(1,)或(1,5)或(1,7).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的高,CE是∠ACB的平分線.
(1)若∠A=40°,∠B=76°,求∠DCE的度數(shù);
(2)若∠A=α,∠B=β,求∠DCE的度數(shù)(用含α,β的式子表示);
(3)當線段CD沿DA方向平移時,平移后的線段與線段CE交于G點,與AB交于H點,若∠A=α,∠B=β,求∠HGE與α、β的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD內部有若干個點,用這些點以及正方形ABCD的頂點A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫下表:
正方形ABCD內點的個數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個數(shù) | 4 | 6 |
|
| … |
|
(2)原正方形能否被分割成2019個三角形?若能,求此時正方形ABCD內部有多少個點?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形ABC與三角形在平面直角坐標系中的位置如圖所示,三角形是由三角形ABC經(jīng)過平移得到的.
(1)分別寫出點的坐標;
(2)說明三角形是由三角形ABC經(jīng)過怎樣的平移得到的;
(3)若點是三角形ABC內的一點,則平移后點P在三角形內的對應點為P‘,寫出點P’的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c滿足|a﹣|++(c﹣4)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構成三角形?若能構成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個三角形紙片的兩邊長是5和6,第三邊的長是方程x2﹣6x+5=0的一個根,若用此三角形紙片剪出一個圓,則剪出的圓的半徑最大是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,AC平分∠BAD,CE⊥AB于E,CD⊥AD于F,且BC=DC.
(1)BE與DF是否相等?請說明理由;
(2)若DF=1,AD=3,求AB的長;
(3)若△ABC的面積是23,△ADC面積是18,直接寫出△BEC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.5米,則梯子頂端A下落了( )米.
A. 0.5 B. 1 C. 1.5 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com