【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方2 米處的點(diǎn)C出發(fā),沿斜面坡度i=1: 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈ ,cos37°≈ ,tan37°≈ .計(jì)算結(jié)果保留根號(hào))

【答案】解:如圖,延長(zhǎng)ED交BC延長(zhǎng)線于點(diǎn)F,則∠CFD=90°,
∵tan∠DCF=i= = ,
∴∠DCF=30°,
∵CD=4,
∴DF= CD=2,CF=CDcos∠DCF=4× =2 ,
∴BF=BC+CF=2 +2 =4 ,
過點(diǎn)E作EG⊥AB于點(diǎn)G,
則GE=BF=4 ,GB=EF=ED+DF=1.5+2=3.5,
又∵∠AED=37°,
∴AG=GEtan∠AEG=4 tan37°,
則AB=AG+BG=4 tan37°+3.5=3 +3.5,
故旗桿AB的高度為(3 +3.5)米

【解析】延長(zhǎng)ED交BC延長(zhǎng)線于點(diǎn)F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2 、DF= CD=2,作EG⊥AB,可得GE=BF=4 、GB=EF=3.5,再求出AG=GEtan∠AEG=4 tan37°可得答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用關(guān)于方向角問題的相關(guān)知識(shí)可以得到問題的答案,需要掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣ |+ ﹣4sin45°﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點(diǎn)D,AM⊥CD于點(diǎn)M,BN⊥CD于N.
(1)求證:∠ADC=∠ABD;
(2)求證:AD2=AMAB;
(3)若AM= ,sin∠ABD= ,求線段BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN= NF;③ = ;④S四邊形CGNF= S四邊形ANGD . 其中正確的結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點(diǎn)D,則∠CBD的度數(shù)為(
A.30°
B.45°
C.50°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)O,B的對(duì)應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是(
A.
B.2
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)!鞍僮兡Х健鄙鐖F(tuán)準(zhǔn)備購(gòu)買A,B兩種魔方,已知購(gòu)買2個(gè)A種魔方和6個(gè)B種魔方共需130元,購(gòu)買3個(gè)A種魔方和4個(gè)B種魔方所需款數(shù)相同.
(1)求這兩種魔方的單價(jià);
(2)結(jié)合社員們的需求,社團(tuán)決定購(gòu)買A,B兩種魔方共100個(gè)(其中A種魔方不超過50個(gè)).某商店有兩種優(yōu)惠活動(dòng),如圖所示.請(qǐng)根據(jù)以上信息,說明選擇哪種優(yōu)惠活動(dòng)購(gòu)買魔方更實(shí)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,點(diǎn)A在⊙O上,∠AMN=30°,B為 的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn).

(1)利用尺規(guī)作圖,確定當(dāng)PA+PB最小時(shí)P點(diǎn)的位置(不寫作法,但要保留作圖痕跡).
(2)求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點(diǎn)E在AB上,F(xiàn)是線段BD的中點(diǎn),連接CE、FE.
(1)若AD=3 ,BE=4,求EF的長(zhǎng);
(2)求證:CE= EF;
(3)將圖1中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點(diǎn)F,問(2)中的結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案