【題目】某小區(qū)開(kāi)展了“行車(chē)安全,方便居民”的活動(dòng),對(duì)地下車(chē)庫(kù)作了改進(jìn).如圖,這小區(qū)原地下車(chē)庫(kù)的入口處有斜坡AC長(zhǎng)為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車(chē)安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC=13°(此時(shí)點(diǎn)B、C、D在同一直線(xiàn)上).
(1)求這個(gè)車(chē)庫(kù)的高度AB;
(2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
【答案】(1)這個(gè)車(chē)庫(kù)的高度AB為5米;(2)斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離為9.7米.
【解析】
(1)根據(jù)坡比可得=,利用勾股定理求出AB的長(zhǎng)即可;(2)由(1)可得BC的長(zhǎng),由∠ADB的余切值可求出BD的長(zhǎng),進(jìn)而求出CD的長(zhǎng)即可.
(1)由題意,得:∠ABC=90°,i=1:2.4,
在Rt△ABC中,i==,
設(shè)AB=5x,則BC=12x,
∴AB2+BC2=AC2,
∴AC=13x,
∵AC=13,
∴x=1,
∴AB=5,
答:這個(gè)車(chē)庫(kù)的高度AB為5米;
(2)由(1)得:BC=12,
在Rt△ABD中,cot∠ADC=,
∵∠ADC=13°,AB=5,
∴DB=5cot13°≈21.655(m),
∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),
答:斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離為9.7米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某工廠要選一塊矩形鐵皮加工成一個(gè)底面半徑為20 cm,高為cm的圓錐形漏斗,要求只能有一條接縫(接縫忽略不計(jì)),請(qǐng)問(wèn):選長(zhǎng)、寬分別為多少厘米的矩形鐵皮,才能使所用材料最省?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,M、N、C三點(diǎn)的坐標(biāo)分別為(,1),(3,1),(3,0),點(diǎn)A為線(xiàn)段MN上的一個(gè)動(dòng)點(diǎn),連接AC,過(guò)點(diǎn)A作交y軸于點(diǎn)B,當(dāng)點(diǎn)A從M運(yùn)動(dòng)到N時(shí),點(diǎn)B隨之運(yùn)動(dòng),設(shè)點(diǎn)B的坐標(biāo)為(0,b),則b的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲站到乙站有150千米,一列快車(chē)和一列慢車(chē)同時(shí)從甲站勻速開(kāi)出,1小時(shí)后快車(chē)在慢車(chē)前12千米,快車(chē)到達(dá)乙站比慢車(chē)早25分鐘,快車(chē)和慢車(chē)每小時(shí)各行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AE=10cm,∠B=∠EAC,則AC的長(zhǎng)為( 。
A. 5cm B. 5cm C. 5 cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.
【類(lèi)比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿(mǎn)足 關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如圖的方式放置.點(diǎn)A1,A2,A3,…,An和點(diǎn)C1,C2,C3,…,Cn分別落在直線(xiàn)y=x+1和x軸上.拋物線(xiàn)L1過(guò)點(diǎn)A1,B1,且頂點(diǎn)在直線(xiàn)y=x+1上,拋物線(xiàn)L2過(guò)點(diǎn)A2,B2,且頂點(diǎn)在直線(xiàn)y=x+1上,…,按此規(guī)律,拋物線(xiàn)Ln過(guò)點(diǎn)An,Bn,且頂點(diǎn)也在直線(xiàn)y=x+1上,其中拋物線(xiàn)L2交正方形A1B1C1O的邊A1B1于點(diǎn)D1,拋物線(xiàn)L3交正方形A2B2C2C1的邊A2B2于點(diǎn)D2,…,拋物線(xiàn)Ln+1交正方形AnBnCnCn-1的邊AnBn于點(diǎn)Dn(其中n≥2且n為正整數(shù)).
(1)直接寫(xiě)出下列點(diǎn)的坐標(biāo):B1________,B2________,B3________;
(2)寫(xiě)出拋物線(xiàn)L2、L3的解析式,并寫(xiě)出其中一個(gè)解析式求解過(guò)程,再猜想拋物線(xiàn)Ln的頂點(diǎn)坐標(biāo)
(3)設(shè)A1D1=k1·D1B1,A2D2=k2·D2B2,試判斷k1與k2的數(shù)量關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABO中,若OA=OB=2,⊙O的半徑為1,當(dāng)∠AOB滿(mǎn)足____________時(shí),直線(xiàn)AB與⊙O相切;當(dāng)∠AOB滿(mǎn)足____________時(shí),直線(xiàn)AB與⊙O相交;當(dāng)∠AOB滿(mǎn)足____________時(shí),直線(xiàn)AB與⊙O相離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鳳城中學(xué)九年級(jí)(3)班的班主任讓同學(xué)們?yōu)榘鄷?huì)活動(dòng)設(shè)計(jì)一個(gè)摸球方案,這些球除顏色外都相同,擬使中獎(jiǎng)概率為50%.
(1)小明的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入黃、白兩種顏色的球共6個(gè),攪勻后從中任意摸出1個(gè)球,摸到黃球則表示中獎(jiǎng),否則不中獎(jiǎng).如果小明的設(shè)計(jì)符合老師要求,則盒子中黃球應(yīng)有 個(gè),白球應(yīng)有 個(gè);
(2)小兵的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入2個(gè)黃球和1個(gè)白球,攪勻后從中任意摸出2個(gè)球,摸到的2個(gè)球都是黃球則表示中獎(jiǎng),否則不中獎(jiǎng),該設(shè)計(jì)方案是否符合老師的要求?試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com