【題目】如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點(diǎn),以點(diǎn)O為圓心,OB長為半徑作圓,恰好經(jīng)過點(diǎn)A,并與BC交于點(diǎn)D.
(1)判斷直線CA與⊙O的位置關(guān)系,并說明理由;
(2)若AB=4,求圖中陰影部分的面積(結(jié)果保留π).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為千米,出租車離甲地的距離為千米,兩車行駛的時(shí)間為x小時(shí),、關(guān)于x的圖象如圖所示:
(1)根據(jù)圖象,分別寫出、關(guān)于x的關(guān)系式(需要寫出自變量取值范圍);
(2)當(dāng)兩車相遇時(shí),求x的值;
(3)甲、乙兩地間有、兩個(gè)加油站,相距200千米,若客車進(jìn)入加油站時(shí),出租車恰好進(jìn)入加油站,求加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】這是一道我們曾經(jīng)探究過的問題:如圖1.等腰直角三角形中,,.直線經(jīng)過點(diǎn),過作于點(diǎn),過作于點(diǎn).易證得≌.(無需證明),我們將這個(gè)模型稱為“一線三等角”或者叫“K形圖”.接下來,我們就利用這個(gè)模型來解決一些問題:
(模型應(yīng)用)
(1)如圖2.已知直線l1:與與坐標(biāo)軸交于點(diǎn)A、B.以AB為直角邊作等腰直角三角形ABC,若存在,請求出C的坐標(biāo);不存在,若說明理由.
(2)如圖3已知直線l1:與坐標(biāo)軸交于點(diǎn)A、B.將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線l2.直線l2在x軸上方的圖像上是否存在一點(diǎn)Q,使得△QAB是以QA為底的等腰直角三角形?若存在,請求出直線BQ的函數(shù)關(guān)系式;若不存在,說明理由.
(拓展延伸)
(3)直線AB:與軸負(fù)半軸、軸正半軸分別交于A、B兩點(diǎn).分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點(diǎn),如圖4,△EPB的面積是否確定?若確定,請求出具體的值;若不確定,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦BC,DE相交于點(diǎn)F,且DE⊥AB于點(diǎn)G,過點(diǎn)C作⊙O的切線交DE的延長線于點(diǎn)H.
(1)求證:HC=HF;
(2)若⊙O的半徑為5,點(diǎn)F是BC的中點(diǎn),tan∠HCF=m,寫出求線段BC長的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校旗桿附近有一斜坡,小明準(zhǔn)備測量旗桿AB的高度,他發(fā)現(xiàn)當(dāng)斜坡正對著太陽時(shí),旗桿AB的影子恰好落在水平地面和斜坡的坡面上,此時(shí)小明測得水平地面上的影子長BC=20米,斜坡坡面上的影子CD=8米,太陽光AD與水平地面BC成30°角,斜坡CD與水平地面BC成45°的角,求旗桿AB的高度.(=1.732,=1.414,=2.449,精確到1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,將△ABC繞點(diǎn)B旋轉(zhuǎn)α(0<α<60°)到△A′BC′,邊AC和邊A′C′相交于點(diǎn)P,邊AC和邊BC′相交于Q.當(dāng)△BPQ為等腰三角形時(shí),則α=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象交軸于點(diǎn),交軸于點(diǎn),點(diǎn)在軸正半軸上,點(diǎn)在射線上,且.垂直軸于點(diǎn).
點(diǎn)坐標(biāo)為________,點(diǎn)坐標(biāo)為________.
操作:將一足夠大的三角板的直角頂點(diǎn)放在射線或射線上,一直角邊始終過點(diǎn),另一直角邊與軸相交于點(diǎn).問是否存在這樣的點(diǎn),使以點(diǎn),,為頂點(diǎn)的三角形與全等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017四川省達(dá)州市,第16題,3分)如圖,矩形ABCD中,E是BC上一點(diǎn),連接AE,將矩形沿AE翻折,使點(diǎn)B落在CD邊F處,連接AF,在AF上取點(diǎn)O,以O為圓心,OF長為半徑作⊙O與AD相切于點(diǎn)P.若AB=6,BC=,則下列結(jié)論:①F是CD的中點(diǎn);②⊙O的半徑是2;③AE=CE;④.其中正確結(jié)論的序號是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2=0有兩個(gè)實(shí)根x1和x2
(1) 求實(shí)數(shù)k的取值范圍
(2) 若方程兩實(shí)根x1、x2滿足x12-x22=0,求k的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com