(2008•黃岡)已知圓錐的底面直徑為4cm,其母線(xiàn)長(zhǎng)為3cm,則它的側(cè)面積為    cm2
【答案】分析:圓錐的側(cè)面積=底面周長(zhǎng)×母線(xiàn)長(zhǎng)÷2.
解答:解:底面直徑為4cm,則底面周長(zhǎng)=4π,側(cè)面積=×4π×3=6πcm2
點(diǎn)評(píng):本題利用了圓的周長(zhǎng)公式和扇形面積公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2008•黃岡)已知:如圖,在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A,B,C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,10),C(0,4),點(diǎn)D為線(xiàn)段BC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線(xiàn)OABD的路線(xiàn)移動(dòng),移動(dòng)的時(shí)間為t秒.
(1)求直線(xiàn)BC的解析式;
(2)若動(dòng)點(diǎn)P在線(xiàn)段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線(xiàn)OABD的路線(xiàn)移動(dòng)過(guò)程中,設(shè)△OPD的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(4)試探究:當(dāng)動(dòng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),能否在線(xiàn)段OA上找到一點(diǎn)Q,使四邊形CQPD為矩形?并求出此時(shí)動(dòng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年新人教版中考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

(2008•黃岡)已知:如圖,在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A,B,C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,10),C(0,4),點(diǎn)D為線(xiàn)段BC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線(xiàn)OABD的路線(xiàn)移動(dòng),移動(dòng)的時(shí)間為t秒.
(1)求直線(xiàn)BC的解析式;
(2)若動(dòng)點(diǎn)P在線(xiàn)段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線(xiàn)OABD的路線(xiàn)移動(dòng)過(guò)程中,設(shè)△OPD的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(4)試探究:當(dāng)動(dòng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),能否在線(xiàn)段OA上找到一點(diǎn)Q,使四邊形CQPD為矩形?并求出此時(shí)動(dòng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年山東省泰安市寧陽(yáng)縣中考數(shù)學(xué)模擬試卷(10)(解析版) 題型:解答題

(2008•黃岡)已知:如圖,在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A,B,C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,10),C(0,4),點(diǎn)D為線(xiàn)段BC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線(xiàn)OABD的路線(xiàn)移動(dòng),移動(dòng)的時(shí)間為t秒.
(1)求直線(xiàn)BC的解析式;
(2)若動(dòng)點(diǎn)P在線(xiàn)段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的;
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線(xiàn)OABD的路線(xiàn)移動(dòng)過(guò)程中,設(shè)△OPD的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(4)試探究:當(dāng)動(dòng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),能否在線(xiàn)段OA上找到一點(diǎn)Q,使四邊形CQPD為矩形?并求出此時(shí)動(dòng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省某市新人教版中考數(shù)學(xué)模擬試卷(10)(解析版) 題型:解答題

(2008•黃岡)已知:如圖,在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A,B,C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,10),C(0,4),點(diǎn)D為線(xiàn)段BC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線(xiàn)OABD的路線(xiàn)移動(dòng),移動(dòng)的時(shí)間為t秒.
(1)求直線(xiàn)BC的解析式;
(2)若動(dòng)點(diǎn)P在線(xiàn)段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的;
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線(xiàn)OABD的路線(xiàn)移動(dòng)過(guò)程中,設(shè)△OPD的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(4)試探究:當(dāng)動(dòng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),能否在線(xiàn)段OA上找到一點(diǎn)Q,使四邊形CQPD為矩形?并求出此時(shí)動(dòng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省蘇州市吳江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•黃岡)已知:如圖,在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A,B,C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,10),C(0,4),點(diǎn)D為線(xiàn)段BC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線(xiàn)OABD的路線(xiàn)移動(dòng),移動(dòng)的時(shí)間為t秒.
(1)求直線(xiàn)BC的解析式;
(2)若動(dòng)點(diǎn)P在線(xiàn)段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的;
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線(xiàn)OABD的路線(xiàn)移動(dòng)過(guò)程中,設(shè)△OPD的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(4)試探究:當(dāng)動(dòng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),能否在線(xiàn)段OA上找到一點(diǎn)Q,使四邊形CQPD為矩形?并求出此時(shí)動(dòng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案