【題目】如圖,正方形ABCD中,AD=4,EAB上且AB=4BE,連接CE,作BFCEF,正方形對角線交于O點,連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長為_____

【答案】

【解析】

RtBCE中,BFCE,CBE=90°,可得BF==,再判定COF∽△CEA,可得∠CFO=CAB=45°,進而得到∠CFG=CFO=45°,BFH=90°-45°=45°,可得BFH是等腰直角三角形,再根據(jù)COF∽△CEA,可得,即,進而得出OF==GF,HG=FG-FH=,最后在RtBHG中,由勾股定理可得BG==

解:如圖,連接BG,過BBHGFH,

由題可得,BE=1,BC=4,AE=3,OC=2,

RtBCE中,CE=,

BFCE,CBE=90°,

BF==,

RtBCE中,BFCE;RtABC中,BOAC,

BC2=CF×CE,BC2=CO×CA,

CF×CE=CO×CA,即

又∵∠OCF=ECA,

∴△COF∽△CEA,

∴∠CFO=CAB=45°,

由折疊可得,∠CFG=CFO=45°,

∴∠BFH=90°-45°=45°,

∴△BFH是等腰直角三角形,

FH=BH=BF=,

∵△COF∽△CEA,

,即,

OF==GF,

HG=FG-FH=,

RtBHG中,BG==

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內(nèi)溫度y()隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18的時間有多少小時?

(2)求k的值;

(3)當x=16時,大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,已知拋物線 L1:y=﹣x2+2x+3 x 軸交于 A,B 兩點A在點 B 的左側(cè),與 y 軸交于點 C,在 L1 上任取一點 P,過點 P 作直線 l⊥x 軸, 垂足為D,將 L1 沿直線 l 翻折得到拋物線L2,交 x 軸于點 M,N(M 在點 N 的左側(cè)).

(1)L1 L2 重合時,求點 P 的坐標;

(2)當點 P 與點 B 重合時,求此時 L2 的解析式;并直接寫出 L1 與 L2 中,y 均隨x 的增大而減小時的 x 的取值范圍;

(3)連接 PM,PB,設點 P(m,n),當 n=m 時,求△PMB 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 ABCD 是邊長為 2,一個銳角等于 60°的菱形紙片,將一個EDF=60°的三角形紙片的一個頂點與該菱形頂點 D 重合,按順時針方向旋轉(zhuǎn)這個三角形紙片,使它的兩邊分別交 CB,BA(或它們的延長線于點 E, F;

①當 CE=AF 時,如圖①,DE DF 的數(shù)量關系是

②繼續(xù)旋轉(zhuǎn)三角形紙片,當 CE≠AF 時,如圖②,(1)的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由;

③再次旋轉(zhuǎn)三角形紙片,當點 E,F(xiàn) 分別在 CB,BA 的延長線上時,如圖③, 請直接寫出 DE DF 的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在一棵樹的10m高的B處有兩只猴子,其中一只爬下樹走向離樹20m的池塘C.而另一只猴子爬到樹頂D沿直線DC進入池塘,結(jié)果兩只猴子經(jīng)過的路程相等,則樹有多高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某連鎖超市派遣調(diào)查小組在春節(jié)期間調(diào)查某種商品的銷售情況,下面是調(diào)查后小張與其 他兩位成員交流的情況.

小張:“該商品的進價為 24/件.”

成員甲:“當定價為 40/件時,每天可售出 480件.”

成員乙:“若單價每漲 1元,則每天少售出 20件;若單價每降 1元,則每天多售出 40件.” 根據(jù)他們的對話,請你求出要使該商品每天獲利 7680元,應該怎樣合理定價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ACAB.

(1)AB邊的垂直平分線交BC于點P,作AC邊的垂直平分線交BC于點Q,連接AP,AQ.(尺規(guī)作圖,保留作圖痕跡,不需要寫作法)

(2)(1)的條件下,若BC14,求△APQ的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PQ切⊙OE,ACPQC,交⊙OD.

(1)求證:AE平分∠BAC;

(2)AD=2,EC= ,BAC=60°,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案