菱形的面積為,一條對角線長為6cm,則另一條對角線長為________,菱形高為________.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某中學有一塊長為a米,寬為b米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進一步美化校園,根據(jù)實際情況,學校決定對整個矩形場地作如下設(shè)計(要求同時符合下述兩個條件):
條件①:在每塊草坪上各修建一個面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個花圃的面積之差為13米2
條件②:整個矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設(shè)計方案的一種草圖(不必說明畫法與根據(jù)),并求出每個菱形花圃的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若菱形的兩條對角線的比為3:4,且周長為20cm,則它的一組對邊的距離等于
 
cm,它的面積等于
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,矩形鐵片ABCD中,AD=8,AB=4; 為了要讓鐵片能穿過直徑為3.8的圓孔,需對鐵片進行處理 (規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔).
(1)直接寫出矩形鐵片ABCD的面積
32
32
;
(2)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,將矩形鐵片的四個角去掉.
①證明四邊形MNPQ是菱形;
②請你通過計算說明四邊形鐵片MNPQ能穿過圓孔.
(3)如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片.當BE=DF=1時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆福建省永春縣九年級上學期期末數(shù)學試卷(帶解析) 題型:解答題

如圖1, 矩形鐵片ABCD中,AD="8," AB="4;" 為了要讓鐵片能穿過直徑為3.8的圓孔, 需對鐵片進行處理 (規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔).
(1)直接寫出矩形鐵片ABCD的面積           ;
(2)如圖2, M、N、P、Q分別是AD、AB、BC、CD的中點,將矩形鐵片的四個角去掉.
①證明四邊形MNPQ是菱形;
②請你通過計算說明四邊形鐵片MNPQ能穿過圓孔.
(3)如圖3, 過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合), 沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片.當BE=DF=1時,判斷直角梯形鐵片EBAF能否穿過圓孔, 并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年福建省永春縣九年級上學期期末數(shù)學試卷(解析版) 題型:解答題

如圖1, 矩形鐵片ABCD中,AD=8, AB=4; 為了要讓鐵片能穿過直徑為3.8的圓孔, 需對鐵片進行處理 (規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔).

(1)直接寫出矩形鐵片ABCD的面積           

(2)如圖2, M、N、P、Q分別是AD、AB、BC、CD的中點,將矩形鐵片的四個角去掉.

① 證明四邊形MNPQ是菱形;

②請你通過計算說明四邊形鐵片MNPQ能穿過圓孔.

(3)如圖3, 過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合), 沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片.當BE=DF=1時,判斷直角梯形鐵片EBAF能否穿過圓孔, 并說明理由.

 

查看答案和解析>>

同步練習冊答案