【題目】x2是方程ax4的解,則a的值為( 。

A.2B.2C.4D.4

【答案】B

【解析】

x=2代入已知方程,列出關(guān)于a的方程,通過(guò)解該方程來(lái)求a的值.

解:∵x2是方程ax4的解,

2a4,

解得a2

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)將ABD平移,使D沿BD延長(zhǎng)線移至C得到A′B′D′,A′B′交AC于E,AD平分BAC.

(1)猜想B′EC與A′之間的關(guān)系,并寫出理由.

(2)如圖將ABD平移至如圖(2)所示,得到A′B′D′,請(qǐng)問(wèn):A′D平分B′A′C嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定兩數(shù)ab之間的一種運(yùn)算,記作(a,b):如果,那么(ab)=c

例如:因?yàn)?3=8,所以(2,8)=3.

(1)根據(jù)上述規(guī)定,填空:

(3,27)=_______,(5,1)=_______,(2, )=_______.

(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:

設(shè)(3n,4n)=x,則(3nx=4n,即(3xn=4n

所以3x=4,即(3,4)=x,

所以(3n,4n)=(3,4).

請(qǐng)你嘗試運(yùn)用上述這種方法說(shuō)明下面這個(gè)等式成立的理由:(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車,經(jīng)市場(chǎng)調(diào)查知,購(gòu)買3量男式單車與4輛女式單車費(fèi)用相同,購(gòu)買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價(jià);

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購(gòu)置兩種單車的費(fèi)用不超過(guò)50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,AD平分∠BAC交BC于點(diǎn)D,BC的中點(diǎn)為M,ME∥AD,交BA的延長(zhǎng)線于點(diǎn)E,交AC于點(diǎn)F.

(1)求證:AE=AF;

(2)求證:BE=(AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)ECD的中點(diǎn),BD=12,求△DOE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,EAB的中點(diǎn),以點(diǎn)E為圓心,EB為半徑畫(huà)弧,交BC于點(diǎn)D,連接ED并延長(zhǎng)到點(diǎn)F,使DF=DE,連接FC,若∠B=70°,則∠F的度數(shù)是( 。

A. 40 B. 70 C. 50 D. 45

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某燈泡廠的一次質(zhì)量檢查,從3000個(gè)燈泡中抽查了300個(gè),其中有6個(gè)不合格,則出現(xiàn)不合格燈泡的頻率為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案