【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,27)=_______,(5,1)=_______,(2, )=_______.
(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:
設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
請你嘗試運用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標(biāo)為(1,0),點B的坐標(biāo)為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.
(1)求該拋物線的解析式;
(2)當(dāng)點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,BD⊥AC于點D,E為BC上一點,過E點作EF⊥AC,垂足為F,過點D作DH∥BC交AB于點H.
(1)請你補全圖形。
(2)求證:∠BDH=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校音樂組決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)在這次調(diào)查中一共抽查了名學(xué)生,其中,喜歡“舞蹈”活動項目的人數(shù)占抽查總?cè)藬?shù)的百分比為 , 喜歡“戲曲”活動項目的人數(shù)是人;
(2)若在“舞蹈、樂器、聲樂、戲曲”活動項目任選兩項設(shè)立課外興趣小組,請用列表或畫樹狀圖的方法求恰好選中“舞蹈、聲樂”這兩項活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆柋硎鞠铝嘘P(guān)系:
(l)a的2倍比a與3的和; (2)y的一半與5的差是非負(fù)數(shù);
(3)x的3倍與1的和小于x的2倍與5的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(﹣m,n),B(0,m),且m、n滿足+(n﹣5)2=0,點C在y軸上,將△ABC沿y軸折疊,使點A落在點D處.
(1)寫出D點坐標(biāo)并求A、D兩點間的距離;
(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度數(shù);
(3)過點C作QH平行于AB交x軸于點H,點Q在HC的延長線上,AB交x軸于點R,CP、RP分別平分∠BCQ和∠ARX,當(dāng)點C在y軸上運動時,∠CPR的度數(shù)是否發(fā)生變化?若不變,求其度數(shù);若變化,求其變化范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com