【題目】如圖,拋物線y=ax2+bx+c交x軸于(﹣1,0),(3,0)兩點(diǎn),則下列判斷中,錯(cuò)誤的是( )
A.圖象的對(duì)稱軸是直線x=1
B.當(dāng)﹣1<x<3時(shí),y<0
C.當(dāng)x>1時(shí),y隨x的增大而減小
D.一元二次方程中ax2+bx+c=0的兩個(gè)根是﹣1和3
【答案】B
【解析】
根據(jù)函數(shù)圖象和性質(zhì)即可判斷A、C、D選項(xiàng)正確,B選項(xiàng)錯(cuò)誤.進(jìn)而可以選擇.
解:根據(jù)函數(shù)圖象可知:
A、∵拋物線y=ax2+bx+c交x軸于(﹣1,0),(3,0)兩點(diǎn),
∴圖象的對(duì)稱軸是直線x=1,因此A選項(xiàng)正確,不符合題意;
B、當(dāng)﹣1<x<3時(shí),y>0,因此B選項(xiàng)錯(cuò)誤,符號(hào)題意;
C、當(dāng)x>1時(shí),y隨x的增大而減小,因此C選項(xiàng)正確,不符合題意;
D、一元二次方程中ax2+bx+c=0的兩個(gè)根是﹣1和3.因此D選項(xiàng)正確,不符合題意.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)在直線上,橫坐標(biāo)為.
(1)確定二次函數(shù)的解析式;
(2)如圖1,時(shí),交二次函數(shù)的圖象于點(diǎn)的面積記作為何值時(shí)的值最大,并求出的最大值;
(3)如圖2,過點(diǎn)作軸的平行線交二次函數(shù)的圖象于點(diǎn)點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱是否存在點(diǎn)使四邊形為菱形,若存在直接寫出的值;若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過點(diǎn)A;P是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),過點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)學(xué)生的疫情防控意識(shí),響應(yīng)“停課不停學(xué)”號(hào)召,某校組織了一次“疫情防控知識(shí)”專題網(wǎng)上學(xué)習(xí),并進(jìn)行了一次全校2500名學(xué)生都參加的網(wǎng)上測(cè)試.閱卷后,教務(wù)處隨機(jī)抽取了100份答卷進(jìn)行分析統(tǒng)計(jì),發(fā)現(xiàn)考試成績(分)的最低分為51分,最高分為滿分100分,并繪制了如下不完整的統(tǒng)計(jì)圖表.請(qǐng)根據(jù)圖表提供的信息,解答下列問題:
分?jǐn)?shù)段(分) | 頻數(shù)(人) | 頻率 |
0.1 | ||
18 | 0.18 | |
35 | 0.35 | |
12 | 0.12 | |
合計(jì) | 100 | 1 |
(1)填空:________,________,________;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)該校對(duì)成績?yōu)?/span>的學(xué)生進(jìn)行獎(jiǎng)勵(lì),按成績從高分到低分設(shè)一、二、三等獎(jiǎng),并且一、二、三等獎(jiǎng)的人數(shù)比例為,請(qǐng)你估算全校獲得二等獎(jiǎng)的學(xué)生人數(shù);
(4)結(jié)合調(diào)查的情況,為了提高疫情防控意識(shí),請(qǐng)你給學(xué)校提一條合理性建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=20,連接BD,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC.
(1)求證:AE=CE;
(2)若sin∠ABD=,當(dāng)點(diǎn)P在線段BC上時(shí),若BP=8,求△PEC的面積;
(3)若∠ABC=45°,當(dāng)點(diǎn)P在線段BC的延長線上時(shí),請(qǐng)求出△PEC是等腰三角形時(shí)BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為3,A為圓內(nèi)一定點(diǎn),AO=1,P為圓上一動(dòng)點(diǎn),以AP為邊作等腰△APQ,AP=PQ,∠APQ=120°,則OQ的最大值為( 。
A.1+3B.1+2C.3+D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn)拋物線的對(duì)稱軸是直線與軸的交點(diǎn)為點(diǎn)且經(jīng)過點(diǎn)兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)為拋物線對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),請(qǐng)你求出點(diǎn)的坐標(biāo);
(3)拋物線上是否存在點(diǎn),過點(diǎn)作軸于點(diǎn)使得以點(diǎn)為頂點(diǎn)的三角形與相似?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別為AB,AD的中點(diǎn),CE,BF相交于點(diǎn)G,AB=2,則CG=( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com