【題目】已知O的半徑為3,A為圓內(nèi)一定點,AO1,P為圓上一動點,以AP為邊作等腰△APQ,APPQ,∠APQ120°,則OQ的最大值為(  )

A.1+3B.1+2C.3+D.3

【答案】A

【解析】

以點P為頂點作等腰三角形OPM,OP=PM,可以證明△AOP≌△QMP,可得MQ=OA=1,作,根據(jù)三角函數(shù)可得OM=,根據(jù)三角形三邊關(guān)系可得OQOM+MQ= +1,當且僅當MOQ上時,取等號,即可得結(jié)論.

解:如圖,

以點P為頂點作等腰三角形OPM,OPPM

OPM120,

∵∠APQ120°,

∴∠OPM=∠APQ,

∵∠OPA+APM=∠MPQ+APM,

∴∠OPA=∠MPQ,

APPQOMPM,

∴△AOP≌△QMPSAS),

MQOA1,

如圖,在中,作

POM30°,

OHOPcos30°=

OQOM+MQ

當且僅當MOQ上時,取等號,

OQ的最大值為

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線與x軸,y軸分別交于點A,B,點在第一象限內(nèi),連結(jié),.動點P在上從點A向終點B勻速運動,同時,動點Q在上從點C向終點O勻速運動,它們同時到達終點,連結(jié)于點D.

(1)求點B的坐標和a的值;

(2)當點Q運動到中點時,連結(jié),求的面積;

(3)作交直線于點R.

①當為等腰三角形時,求的長度;

②記于點E,連結(jié),則的最小值為__________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足SPAB=S矩形ABCD,則點PA、B兩點的距離之和PA+PB的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸于(1,0),(3,0)兩點,則下列判斷中,錯誤的是(

A.圖象的對稱軸是直線x1

B.當﹣1x3時,y0

C.x1時,yx的增大而減小

D.一元二次方程中ax2+bx+c0的兩個根是﹣13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常滿意;B級:滿意;C級:基本滿意;D級:不滿意),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)______.

2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計圖補充完整.

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的人數(shù)約為多少戶?

4)調(diào)查人員想從5戶建檔立卡貧困戶(分別記為)中隨機選取兩戶,調(diào)查他們對精準扶貧政策落實的滿意度,請用列表或畫樹狀圖的方法求出選中貧困戶的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°.∠ABC的平分線交AC于點O,以點O為圓心,OC為半徑.在△ABC同側(cè)作半圓O

1)求證:ABO相切;

2)若AB5,AC4,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是雙曲線上的一個動點,連接并延長交雙曲線于點將線段繞點逆時針旋轉(zhuǎn)得到線段若點在雙曲線上運動,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙O與邊AB交于點D,過點D作⊙O的切線,交BCE

1)求證:點E是邊BC的中點;

2)求證:BC2BDBA;

3)當ACBC時,四邊形OCED是什么四邊形,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是某兒童樂園為小朋友設(shè)計的滑梯平面圖.已知BC=4 m,AB=6 m,中間平臺寬度DE=1 m,EN,DM,CB為三根垂直于AB的支柱,垂足分別為N,M,B,EAB=31°,DFBC于點F,CDF=45°,DMBC的水平距離BM的長度.(結(jié)果精確到0.1 m.參考數(shù)據(jù):sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)

查看答案和解析>>

同步練習冊答案