【題目】如圖,點是雙曲線上的一個動點,連接并延長交雙曲線于點將線段繞點逆時針旋轉(zhuǎn)得到線段若點在雙曲線上運動,則_____

【答案】

【解析】

連結(jié)AC、OC,易證AOOC;由∠AOC=90°想到構造K型相似,過點AADx軸,垂足為D,過點CCEx軸,垂足為E,可證△ADO∽△OEC.從而得到,;設點A坐標為,則,設點C坐標為,從而有,即

解:∵雙曲線的圖象關于原點對稱,

∴點A與點B關于原點對稱,則OA=OB

如圖,連結(jié)ACOC,

∵將線段ABB逆時針旋轉(zhuǎn)60°得到線段BC,

∴△ABC是等邊三角形,,

OCAB,△AOC為直角三角形,

過點AADx軸,垂足為D,過點CCEx軸,垂足為E,

,

,

,

∴△ADO∽△OEC,

,

,

設點A坐標為,

∵點A在第一象限,

,

,,

又∵點在雙曲線上,

,

設點C坐標為

∵點C在第四象限,

,

,

,

∵點在雙曲線上,

,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象相交于點A、點D,且點A的橫坐標為1,點D的縱坐標為-1,過點AABx軸于點B,△AOB的面積為1

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)若一次函數(shù)y=ax+b的圖像與x軸交于點C,求∠ACO的度數(shù).

3)結(jié)合圖像直接寫出,當時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的半徑為5,點A的坐標為(3,0),x軸相交于點B,C,交y軸正半軸于點D

1)求點B,D的坐標;

2)過點B的切線,與過點AC的拋物線交于點P.拋物線交y軸正半軸于點Q.若P的縱坐標為t,四邊形PQAC的面積為y

①求yt的函數(shù)關系式;

②若PBODOA相似,求取最小值時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖1,拋物線軸交于兩點(點在點的左側(cè)),頂點為為對稱軸右側(cè)拋物線的一個動點,直線軸于點,過點,交軸于點

1)求直線的函數(shù)表達式及點的坐標;

2)如圖2,當軸時,將以每秒1個單位長度的速度沿軸的正方向平移,當點與點重合時停止平移.設平移秒時,在平移過程中與四邊形重疊部分的面積為,求關于的函數(shù)關系式,并寫出自變量的取值范圍;

3)如圖3,過點軸的平行線,交直線于點,直線交于點,設點的橫坐標為

①當時,求的值;

②試探究點在運動過程中,是否存在值,使四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線軸和軸分別交于點和點拋物線經(jīng)過點與直線的另一個交點為

的值和拋物線的解析式

在拋物線上,軸交直線于點在直線上,且四邊形為矩形.設點的橫坐標為矩形的周長為的函數(shù)關系式以及的最大值

繞平面內(nèi)某點逆時針旋轉(zhuǎn)得到(點分別與點對應),若的兩個頂點恰好落在拋物線上,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸交于點,與軸交于點拋物線的對稱軸是直線軸的交點為點且經(jīng)過點兩點.

1)求拋物線的解析式;

2)點為拋物線對稱軸上一動點,當的值最小時,請你求出點的坐標;

3)拋物線上是否存在點,過點軸于點使得以點為頂點的三角形與相似?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20191010日傍晚1810左右,江蘇省無錫市山區(qū)312國道上海方向K135處,錫港路上跨橋出現(xiàn)橋面?zhèn)确斐?/span>3人死亡,2人受傷,盡管該事故原因初步分析為半掛牽引車嚴重超載導致橋梁發(fā)生側(cè)翻,但是也引起了社會各界對橋梁設計安全性的擔憂,我市積極開展對橋梁結(jié)構設計的安全性進行評估(已知:抗傾覆系數(shù)越高,安全性越強;當抗傾覆系數(shù)≥25時,認為該結(jié)構安全),現(xiàn)在重慶市隨機抽取了甲、乙兩個設計院,對其各自在建的或已建的20座橋梁項目進行排查,將得到的抗傾覆數(shù)據(jù)進行整理、描述和分析(抗傾覆數(shù)據(jù)用x表示,共分成6組:A0x25B25x50,C50x75,D75x100,E100x125F125x15),下面給出了部分信息;

其中,甲設計院C組的抗傾覆系數(shù)是:7,77,6,7,7

乙設計院D組的抗傾覆系數(shù)是:8,8,9,8,8,8;

甲、乙設計院分別被抽取的20座橋梁的抗傾覆系數(shù)統(tǒng)計表

設計院

平均數(shù)

7.7

8.9

眾數(shù)

a

8

中位數(shù)

7

b

方差

19.7

18.3

根據(jù)以上信息解答下列問題:

1)扇形統(tǒng)計圖中D組數(shù)據(jù)所對應的圓心角是   度,a   ,b   ;

2)根據(jù)以上數(shù)據(jù),甲、乙兩個設計院中哪個設計院的橋梁安全性更高,說明理由(一條即可):   

3)據(jù)統(tǒng)計,2018年至2019年,甲設計院完成設計80座橋梁,乙設計院完成設計120座橋梁,請估算2018年至2019年兩設計院的不安全橋梁的總數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學最重要的著作,約成書于四、五世紀.現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分數(shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長幾何?”

譯文:“用一根繩子去量一根長木,繩子還剩余4.5,將繩子對折再量長木,長木還剩余1,問長木長多少尺?”

請解答上述問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:△ABC是等邊三角形,AB12,EAC中點,D是直線BC上一動點,線段ED繞點E逆時針旋轉(zhuǎn)90°,得線段EF,當點D運動時,則線段AF的最小值為_____

查看答案和解析>>

同步練習冊答案