【題目】某采摘農(nóng)場計劃種植兩種草莓共6畝,根據(jù)表格信息,解答下列問題:
(1)若該農(nóng)場每年草莓全部被采摘的總收入為元,那么兩種草莓各種多少畝? (2)若要求種植種草莓的畝數(shù)不少于種植種草莓的一半,那么種植種草莓多少畝時,可使該農(nóng)場每年草莓全部被采摘的總收入最多?
【答案】(1)A種草莓種植2.5畝,B種草莓種植3.5畝;(2)若種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓2畝時,可使農(nóng)場每年草莓全部被采摘的總收入最多.
【解析】
(1)根據(jù)等量關(guān)系:總收入=A地的畝數(shù)×年畝產(chǎn)量×采摘價格+B地的畝數(shù)×年畝產(chǎn)量×采摘價格,列方程求解.
(2)這是一道只有一個函數(shù)關(guān)系式的求最值問題,根據(jù)題意確定自變量的取值范圍,由函數(shù)y隨x的變化求出最大利潤.
(1)設(shè)該農(nóng)場種植A種草莓x畝,B種草莓(6-x)畝
依題意,得:60×1200x+40×2000(6-x)=460000
解得:x=2.5,
則6-x=3.5
(2)由x≥(6-x),解得x≥2
設(shè)農(nóng)場每年草莓全部被采摘的收入為y元,則:
y=60×1200x+40×2000(6-x)=-8000x+480000
∴當x=2時,y有最大值為464000
答:(1)A種草莓種植2.5畝,B種草莓種植3.5畝
(2)若種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓2畝時,可使農(nóng)場每年草莓全部被采摘的總收入最多.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)分別是邊AD,BC的中點,AC分別交BE,DF于點M,N,給出下列結(jié)論:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S△ABC,其中正確的結(jié)論是__ __.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B是數(shù)軸上原點O兩側(cè)的兩點,其中點A在負半軸上,點B在正半軸上,AO=2, OB=10.動點P從點A出發(fā)以每秒2個單位長度的速度向右運動,到達點B后立即返回,速度不變;動點Q從點O出發(fā)以每秒1個單位長度的速度向右運動,當點Q到達點B時,動點P,Q停止運動.設(shè)P,Q兩點同時出發(fā),運動時間為t秒.
(1)當點P從點A向點B運動時,點P在數(shù)軸上對應(yīng)的數(shù)為 當點P從點B返回向點O運動時,點P在數(shù)軸上對應(yīng)的數(shù)為 (用含t的代數(shù)式表示)
(2)當t為何值時,點P,Q第一次重合?
(3)當t為何值時,點P,Q之間的距離為3個單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2011貴州安順,10,3分)一只跳蚤在第一象限及x軸、y軸上跳動,在第一秒鐘,它從原點跳動到(0,1),然后接著按圖中箭頭所示方向跳動[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳動一個單位,那么第35秒時跳蚤所在位置的坐標是( )
A. (4,O) B. (5,0) C. (0,5) D. (5,5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增.計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:㎡),繪制了統(tǒng)計圖,如圖所示,下面有四個推斷:
① 年用水量不超過180㎡的該市居民家庭按第一檔水價交費
② 年用水量超過240㎡的該市居民家庭按第三檔水價交費
③ 該市居民家庭年用水量的中位數(shù)在150-180之間
④ 該市居民家庭年用水量的平均數(shù)不超過180
正確的是( )
A.①③ B.①④ C.②③ D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知樹枝AB長為1.將樹枝AB按照如下規(guī)則進行分形.其中1級分形圖中,由B點處生長出兩條樹枝BD,BE,每條樹枝長均為AB長的一半;在2級分形圖中,D、E兩點處生長出的每條樹枝都等于DB長的一半.按照上面分形方法得到3級、4級分形圖形.
按照上面的規(guī)律,在3級分形圖中,樹枝長度的總和是_____________;
在n級分形圖中,樹枝總條數(shù)是___________(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是BC上一點,DE∥AB,交AC于點E,DF∥AC,交AB點F.
(1)直接寫出圖中與∠BAC構(gòu)成的同旁內(nèi)角.
(2)請說明∠A與∠EDF相等的理由.
(3)若∠BDE +∠CDF=234°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com