【題目】如圖,在平面直角坐標(biāo)系中,O為原點,點A(2,1),B(﹣2,4),直線AB與y軸交于點C.
(1)求點C的坐標(biāo);
(2)求證:△OAB是直角三角形.
【答案】(1)(0,);(2)見解析
【解析】
(1)利用待定系數(shù)法求出直線AB的解析式,求出點C的坐標(biāo);
(2)根據(jù)勾股定理分別求出OA2、OB2、AB2,根據(jù)勾股定理的逆定理判斷即可.
(1)解:設(shè)直線AB的解析式為:y=kx+b,
點A(2,1),B(﹣2,4),
則,
解得,,
∴設(shè)直線AB的解析式為:y=﹣x+,
∴點C的坐標(biāo)為(0,);
(2)證明:∵點A(2,1),B(﹣2,4),
∴OA2=22+12=5,OB2=22+42=20,AB2=(4-1)2+(-2-2)2=25,
則OA2+OB2=AB2,
∴△OAB是直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD.
(1)如圖1,EOF是直線AB、CD間的一條折線,猜想∠1、∠2、∠3的數(shù)量關(guān)系,并說明理由;
(2)如圖2,若點C在點D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DF所在直線交于點E,若∠ADC=α,∠ABC=β,求∠BED的度數(shù)(用含有α、β的式子表示);
(3)在(2)的前提下將線段BC沿DC方向平移,使得點B在點A的右側(cè),其他條件不變,若∠ADC=α,∠ABC=β,求∠BED的度數(shù)(用含有α、β的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過平行四邊形ABCD對角線交點O的線段EF,分別交AD,BC于點E,F,當(dāng)AE=ED時,△AOE的面積為4,則四邊形EFCD的面積是( 。
A.8B.12C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與理解:
如圖,一只甲蟲在5×5的方格(每個方格邊長均為1)上沿著網(wǎng)格線爬行.若我們規(guī)定:在如圖網(wǎng)格中,向上(或向右)爬行記為“+”,向下(或向左)爬行記為“﹣”,并且第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
例如:從A到B記為:A→B(+1,+4),從D到C記為:D→C(﹣1,+2).
思考與應(yīng)用:
(1)圖中B→C( , )C→D( , )
(2)若甲蟲從A到P的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請在圖中標(biāo)出P的位置.
(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請計算該甲蟲走過的總路程S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OBCD中,OB=5,OD=3,以O為原點建立平面直角坐標(biāo)系,點B,點D分別在x軸,y軸上,點C在第一象限內(nèi),若平面內(nèi)有一動點P,且滿足S△POB=S矩形OBCD,問:
(1)當(dāng)點P在矩形的對角線OC上,求點P的坐標(biāo);
(2)當(dāng)點P到O,B兩點的距離之和PO+PB取最小值時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,點F 是CD延長線上的一點,且AD平分∠BDF,AE⊥CD于點E.
⑴ 求證:AB=AC.
⑵ 若BD=11,DE=2,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖象中所反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家.其中x表示時 間,y表示張強(qiáng)離家的距離.根據(jù)圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強(qiáng)家2.5千米
B. 張強(qiáng)在體育場鍛煉了15分鐘
C. 體育場離早餐店1.千米
D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點E,D,在BC的延長線上取點F,使得BF=EF,EF與AC交于點G.
(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com