【題目】如圖,已知AB=10,P是線段AB上的任意一點(diǎn),在AB的同側(cè)分別以AP、PB為邊作等邊三角形APC和等邊三角形PBD,連結(jié)CD.
(1)當(dāng)AP=6時,求CD的長;
(2)當(dāng)AP為多少時,CD的值最小,最小值是多少?
【答案】(1)2;(2)當(dāng)AP=5時,CD的長度最小,最小值是5.
【解析】
(1)如圖,過C作CE⊥AB于E,過D作DF⊥PB于F,過D作DG⊥CE于G.即可得四邊形DFEG為矩形.根據(jù)等邊三角形的性質(zhì)及矩形的性質(zhì)求得EF=5,CG=,再利用勾股定理求得CD的長即可;(2)在(1)的基礎(chǔ)上可得CD= ,當(dāng)CG=0時,CD有最小值,由此求得CD的長即可.
(1)如圖,過C作CE⊥AB于E,過D作DF⊥PB于F,過D作DG⊥CE于G.即可得四邊形DFEG為矩形.
∵AB=10,AP=6,
∴PB=4,
∵△APC和△PBD是等邊三角形,CE⊥AB , DF⊥PB,
∴EP=AP=3,PF=PB=2,
∴EF=EP+FP=5.
在Rt△DPF中,DP=4,PF=2,
由勾股定理求得DF=.
在Rt△CEP中,PC=6,PE=3,
由勾股定理求得CE=.
由矩形的性質(zhì)可得,DG=EF=5,EG=DF,
∴CG=.
在Rt△CGD中,DG=5,CG=,由勾股定理求得CD=2;
(2)如圖, 由(1)得,DG=EF=AB=5,CD≥DG,
∴CD= ,故CG=0時,CD有最小值,
當(dāng)P為AB中點(diǎn)時,有CD=DG=5,
所以CD長度的最小值是5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提倡全民健身活動, 某社區(qū)準(zhǔn)備購買羽毛球和羽毛球拍供社區(qū)居民使用, 某體育用品商店羽毛球每盒 10 元, 羽毛球拍每副 40 元 .該商店有兩種優(yōu)惠方案,方案一: 不購買會員卡時, 羽毛球享受 8.5 折優(yōu)惠, 羽毛球拍購買 5 副(含5 副) 以上才能享受 8.5 折優(yōu)惠, 5 副以下必須按定價購買;方案二: 每張會員卡 20 元, 辦理會員卡時, 全部商品享受 8 折優(yōu)惠 . 設(shè)該社區(qū)準(zhǔn)備購買羽毛球拍 6 副, 羽毛球盒, 請回答下列問題:
(1)如果一位體育愛好者按方案一只購買了 4 副羽毛球拍,求他購買時所需要的費(fèi)用;
(2)用含的代數(shù)式分別表示該社區(qū)按方案一和方案二購買所需要的錢數(shù);
(3)①直接寫出一個的值, 使方案一比方案二優(yōu)惠;
②直接寫出一個的值, 使方案二比方案一優(yōu)惠 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
如圖是一個小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點(diǎn),點(diǎn)C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:
(1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請你用所學(xué)的數(shù)學(xué)知識說明理由;
(2)若一列長度為228米的高鐵以252千米/小時的速度通過時,則A單元用戶受到影響時間有多長?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】做大小兩個長方體紙盒,尺寸如下(單位:cm)
(1)做這兩個紙盒共用料多少cm2?
(2)做大紙盒比做小紙盒多用料多少cm2?
(3)如果a=8,b=6,c=5,將24個小紙盒包裝成一個長方體,這個長方體的表面積的最小值為________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線l1;y=ax2+bx+c(a<0)經(jīng)過原點(diǎn),與x軸的另一個交點(diǎn)為B(4,0),點(diǎn)A為頂點(diǎn),且直線OA的解析式為y=x.
(1)如圖1,求拋物線l1的解析式;
(2)如圖2,將拋物線l1繞原點(diǎn)O旋轉(zhuǎn)180°,得到拋物線l2 , l2與x軸交于點(diǎn)B′,頂點(diǎn)為A′,點(diǎn)P為拋物線l1上一動點(diǎn),連接PO交l2于點(diǎn)Q,連接PA、PA′、QA′、QA.
請求:平行四邊形PAQA′的面積S與P點(diǎn)橫坐標(biāo)x(2<x≤4)之間的關(guān)系式;
(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點(diǎn)H,使得HB=HA′?若存在,請求出點(diǎn)H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2 , 請在第三象限內(nèi)畫出△A2B2C2 , 并求出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點(diǎn)E、F分別是邊BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列4個命題: ①方程x2﹣( + )x+ =0的根是 和 .
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD= ,則CD=3.
③點(diǎn)P(x,y)的坐標(biāo)x,y滿足x2+y2+2x﹣2y+2=0,若點(diǎn)P也在y= 的圖象上,則k=﹣1.
④若實(shí)數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個不相等的實(shí)數(shù)根,且較大的實(shí)數(shù)根x0滿足﹣1<x0<1.
上述4個命題中,真命題的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水源村在今年退耕還林活動中,計劃植樹200畝,全村在完成植樹40畝后,某環(huán)保組織加入村民植樹活動,并且該環(huán)保組織植樹的速度是全村植樹速度的1.5倍,整個植樹過程共用了13天完成.
(1)全村每天植樹多少畝?
(2)如果全村植樹每天需2000元工錢,環(huán)保組織是義務(wù)植樹,因此實(shí)際工錢比計劃節(jié)約多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com