【題目】如圖,在菱形ABCD中,AC為對(duì)角線,點(diǎn)E、F分別是邊BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長(zhǎng).

【答案】
(1)證明:∵四邊形ABCD是菱形,

∴AB=BC=AD=CD,∠B=∠D,

∵點(diǎn)E、F分別是邊BC、AD的中點(diǎn),

∴BE=DF,

在△ABE和△CDF中,

∴△ABE≌△CDF(SAS);


(2)解:∵∠B=60°,

∴△ABC是等邊三角形,

∵點(diǎn)E是邊BC的中點(diǎn),

∴AE⊥BC,

在Rt△AEB中,∠B=60°,AB=4,

sin60°= ,

解得AE=2


【解析】(1)首先根據(jù)菱形的性質(zhì),得到AB=BC=AD=CD,∠B=∠D,結(jié)合點(diǎn)E、F分別是邊BC、AD的中點(diǎn),即可證明出△ABE≌△CDF;(2)首先證明出△ABC是等邊三角形,結(jié)合題干條件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的長(zhǎng).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解菱形的性質(zhì)(菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深化課程改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“科學(xué)實(shí)驗(yàn)”、“音樂舞蹈”和“手工編織”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán).為此,隨機(jī)調(diào)查了本校各年級(jí)部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):

選擇意向

所占百分比

文學(xué)鑒賞

a

科學(xué)實(shí)驗(yàn)

35%

音樂舞蹈

b

手工編織

10%

其他

c

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)將調(diào)查結(jié)果繪成扇形統(tǒng)計(jì)圖,則“音樂舞蹈”社團(tuán)所在扇形所對(duì)應(yīng)的圓心角為;
(4)若該校共有1200名學(xué)生,試估計(jì)全校選擇“科學(xué)實(shí)驗(yàn)”社團(tuán)的學(xué)生人數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拓展題,如圖所示,其中同旁內(nèi)角有多少對(duì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=10,P是線段AB上的任意一點(diǎn),在AB的同側(cè)分別以AP、PB為邊作等邊三角形APC和等邊三角形PBD,連結(jié)CD.

(1)當(dāng)AP=6時(shí),求CD的長(zhǎng);

(2)當(dāng)AP為多少時(shí),CD的值最小,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王乘公共汽車從甲地到相距40千米的乙地辦事,然后乘出租車返回,出租車的平均速度比公共汽車多20千米/時(shí),回來時(shí)路上所花時(shí)間比去時(shí)節(jié)省了 ,設(shè)公共汽車的平均速度為x千米/時(shí),則下面列出的方程中正確的是(
A. = ×
B. = ×
C. + =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A=2x2+ax﹣5y+b,B=bx2x﹣y﹣3.

(1)求3A﹣(4A﹣2B)的值;

(2)當(dāng)x取任意數(shù)值,A﹣2B的值是一個(gè)定值時(shí),求(a+A)﹣(2b+B)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個(gè)家電廠家在廣告中都聲稱,他們的某種電子產(chǎn)品在正常情況下的使用壽命都是8年,經(jīng)質(zhì)量檢測(cè)部門對(duì)這三家銷售的產(chǎn)品的使用壽命進(jìn)行跟蹤調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:年):

甲廠:4,5,5,5,5,7,9,12,13,15;

乙廠:6,6,8,8,8,9,10,12,14,15;

丙廠:4,4,4,6,7,9,13,15,16,16.

請(qǐng)回答下列問題:

(1)分別寫出以上三組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

(2)這三個(gè)廠家的推銷廣告分別用了哪一種表示集中趨勢(shì)的特征數(shù)?

(3)如果你是顧客,宜選購哪家工廠的產(chǎn)品?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,E,F(xiàn),G,H分別是梯形各邊的中點(diǎn).

(1)請(qǐng)用全等符號(hào)表示出圖中所有的全等三角形(不得添加輔助線),并選其中一對(duì)加以證明;
(2)求證:四邊形EFGH是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在以“關(guān)愛學(xué)生、安全第一”為主題的安全教育宣傳月活動(dòng)中,某學(xué)校為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,了解到上學(xué)方式主要有:A﹣結(jié)伴步行、B﹣?zhàn)孕谐塑、C﹣家人接送、D﹣其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)本次抽查的學(xué)生人數(shù)是多少人?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖,并在圖中標(biāo)出“自行乘車”對(duì)應(yīng)扇形的圓心角的度數(shù);
(4)如果該校學(xué)生有2080人,請(qǐng)你估計(jì)該校“家人接送”上學(xué)的學(xué)生約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案