【題目】已知:拋物線y2ax2ax3a+1)與x軸交于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)).

1)不論a取何值,拋物線總經(jīng)過(guò)第三象限內(nèi)的一個(gè)定點(diǎn)C,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo);

2)如圖,當(dāng)ACBC時(shí),求a的值和AB的長(zhǎng);

3)在(2)的條件下,若點(diǎn)P為拋物線在第四象限內(nèi)的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為h,過(guò)點(diǎn)PPHx軸于點(diǎn)H,交BC于點(diǎn)D,作PEACBC于點(diǎn)E,設(shè)ADE的面積為S,請(qǐng)求出Sh的函數(shù)關(guān)系式,并求出S取得最大值時(shí)點(diǎn)P的坐標(biāo).

【答案】1)第三象限內(nèi)的一個(gè)定點(diǎn)C為(﹣1,﹣3);(2a,AB;(3S=﹣h2+h,當(dāng)h時(shí),S的最大值為,此時(shí)點(diǎn)P,﹣ ).

【解析】

1)對(duì)拋物線解析式進(jìn)行變形,使a的系數(shù)為0,解出x的值,即可確定點(diǎn)C的坐標(biāo);

2)設(shè)函數(shù)對(duì)稱(chēng)軸與x軸交點(diǎn)為M,根據(jù)拋物線的對(duì)稱(chēng)軸可求出M的坐標(biāo),然后利用勾股定理求出CM的長(zhǎng)度,再利用直角三角形的斜邊的中線等于斜邊的一半求出AB的長(zhǎng)度,則A,B兩點(diǎn)的坐標(biāo)可求,再將A,B兩點(diǎn)代入解析式中即可求出a的值;

3)過(guò)點(diǎn)EEFPH于點(diǎn)F,先用待定系數(shù)法求出直線BC的解析式,然后將P,D的坐標(biāo)用含h的代數(shù)式表示出來(lái),最后利用SSABESABD×AB×(yDyE)求解

1y2ax2ax3a+1)=a2x2x3)﹣3,

2x2x30,解得:x或﹣1,

故第三象限內(nèi)的一個(gè)定點(diǎn)C為(﹣1,﹣3);

2)函數(shù)的對(duì)稱(chēng)軸為:x

設(shè)函數(shù)對(duì)稱(chēng)軸與x軸交點(diǎn)為M,則其坐標(biāo)為:(,0),

則由勾股定理得CM,

AB2CM ,

則點(diǎn)AB的坐標(biāo)分別為:(﹣3,0)、(0);

將點(diǎn)A的坐標(biāo)代入函數(shù)表達(dá)式得:18a+3a3a30

解得:a ,

函數(shù)的表達(dá)式為:yx+3)(x)=x2x ;

3)過(guò)點(diǎn)EEFPH于點(diǎn)F,

設(shè):∠ABCα,則∠ABC=∠HPE=∠DEFα,

設(shè)直線BC的解析式為

將點(diǎn)B、C坐標(biāo)代入一次函數(shù)表達(dá)式

解得:

∴直線BC的表達(dá)式為:

設(shè)點(diǎn)Ph,),則點(diǎn)Dh,),

tanABCtanα ,則sinα ,

yDyEDEsinαPDsinαsinα,

SSABESABD

×AB×(yDyE

∵﹣0

S有最大值,當(dāng)h 時(shí),S的最大值為:,此時(shí)點(diǎn)P).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,從地面E點(diǎn)測(cè)得地下停車(chē)場(chǎng)的俯角為30°,斜坡AE的長(zhǎng)為16.地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車(chē)場(chǎng)頂部C點(diǎn)(A、CB在同一條直線上且與水平線垂直)1.2.試求該校地下停車(chē)場(chǎng)的高度AC及限高CD(結(jié)果精確到0.1米,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,上一點(diǎn),,垂足為點(diǎn),是弧的中點(diǎn),與弦交于點(diǎn).

1)如果是弧的中點(diǎn),求的值;

2)如果的直徑,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點(diǎn)A(﹣1,0),B3,0),點(diǎn)C三點(diǎn).

1)試求拋物線的解析式;

2)點(diǎn)D2,m)在第一象限的拋物線上,連接BC,BD.試問(wèn),在對(duì)稱(chēng)軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

3)點(diǎn)N在拋物線的對(duì)稱(chēng)軸上,點(diǎn)M在拋物線上,當(dāng)以M、NB、C為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)Am+2,3m+4)在直線l上,點(diǎn)Bb,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點(diǎn),則b的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會(huì)實(shí)踐活動(dòng)時(shí),想利用所學(xué)的解直角三角形的知識(shí)測(cè)量教學(xué)樓的高度,他們先在點(diǎn)D處用測(cè)角儀測(cè)得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點(diǎn)E處,在點(diǎn)E處測(cè)得樓頂M的仰角為45°,已知測(cè)角儀的高AD1.5米,請(qǐng)根據(jù)他們的測(cè)量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),與軸交于點(diǎn).

1)求拋物線的表達(dá)式;

2)點(diǎn)是拋物線上第二象限內(nèi)的點(diǎn),連接,設(shè)的面積為,當(dāng)取最大值時(shí),求點(diǎn)的坐標(biāo);

3)作射線,將射線點(diǎn)順時(shí)針旋轉(zhuǎn)交拋物線于另一點(diǎn),在射線上是否存在一點(diǎn),使的周長(zhǎng)最小.若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為放置在水平桌面l上的臺(tái)燈,底座的高AB5cm,長(zhǎng)度均為20cm的連桿BC、CDAB始終在同一平面上.

1)轉(zhuǎn)動(dòng)連桿BCCD,使∠BCD成平角,∠ABC150°,如圖2,求連桿端點(diǎn)D離桌面l的高度DE

2)將(1)中的連桿CD再繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),經(jīng)試驗(yàn)后發(fā)現(xiàn),如圖3,當(dāng)∠BCD150°時(shí)臺(tái)燈光線最佳.求此時(shí)連桿端點(diǎn)D離桌面l的高度比原來(lái)降低了多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知某個(gè)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A12),B2,﹣1),C4,﹣1),且該二次函數(shù)的最小值是﹣2

1)請(qǐng)?jiān)趫D中描出該函數(shù)圖象上另外的兩個(gè)點(diǎn),并畫(huà)出圖象;

2)求出該二次函數(shù)的解析.

查看答案和解析>>

同步練習(xí)冊(cè)答案