【題目】如下圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16.地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)1.2.試求該校地下停車場的高度AC及限高CD(結(jié)果精確到0.1米,.

【答案】6.8(米);(米)

【解析】

根據(jù)直角三角形中邊角關(guān)系和特殊角的銳角函數(shù)值,過C點作AE邊的垂線,構(gòu)建出AC所在的直角三角形,然后通過設(shè)出AC的長度,表示出AB的長度,利用直角三角形中邊角關(guān)系即可求出AC的長度,同樣在直角三角形ACD中,利用邊角關(guān)系即可求出CD的長度.

解:過C點向AE作垂線,垂足為D,

設(shè)AC=x,則AB的長為(x+1.2)米,

在Rt△ABE中,∠E=30°,AE=12

根據(jù)直角三角形邊角關(guān)系可得:,

x=6.8

∠E=30°,

∠A=60°,

Rt△ACD中,

(米)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱為P點的“坐標(biāo)差”,而圖形G上所有點的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”

(1)①點A(1,3) 的“坐標(biāo)差”為

②拋物線y=x2+3x+3的“特征值”為 。

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點B(m,0)與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C的“坐標(biāo)差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數(shù)的表達(dá)式。

(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點DE請直接寫出⊙M的“特征值”為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB90°.

1)作出經(jīng)過點B,圓心O在斜邊AB上且與邊AC相切于點EO(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法和證明).

2)設(shè)(1)中所作的O與邊AB交于異于點B的另外一點D,若O得直徑為5,BC4,求AD的長度.(如果尺規(guī)作圖畫不出圖形,此小題可畫草圖解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,對角線,點E是線段BC上的動點,連接DE,過點DDPDE,在射線DP上取點F,使得,連接CF,周長的最小值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近日,國產(chǎn)航母山東艦成為了新晉網(wǎng)紅,作為我國本世紀(jì)建造的第一艘真正意義上的國產(chǎn)航母,承載了我們太多期盼,促使我國在偉大復(fù)興路上加速前行如圖,山東艦在一次測試中,巡航到海島A北偏東60°方向P處,發(fā)現(xiàn)在海島A正東方向有一可疑船只B正沿BA方向行駛。山東艦經(jīng)測量得出:可疑船只在P處南偏東45°方向,距P海里。山東艦立即從P沿南偏西30°方向駛出,剛好在C處成功攔截可疑船只。求被攔截時,可疑船只距海島A還有多少海里?(,結(jié)果精確到0.1海里)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售一種新型產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=x+150,成本為50/件,無論銷售多少,每月還需支出廣告費90000元,設(shè)月利潤為w內(nèi)(元),若只在國外銷售,銷售價格為150/件,受各種不確定因素影響,成本為a/件(a為常數(shù),10a40),當(dāng)月銷量為x(件)時,每月還需繳納x2元的附加費,設(shè)月利潤為w(元).

1)當(dāng)x=1000時,y= /件,w內(nèi)= 元;

2)分別求出w內(nèi),wx間的函數(shù)關(guān)系式(不必寫x的取值范圍);

3)當(dāng)x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,有下列條件:;;③ACBD;④AC⊥BD.

1)從中任選一個作為已知條件,能判定四邊形ABCD是平行四邊形的概率是 ;

2)從中任選兩個作為已知條件,請用畫樹狀圖法求出能判定四邊形ABCD是矩形的概率,并判斷能判定四邊形ABCD是矩形和是菱形的概率是否相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點B1y軸上,頂點C1,E1,E2,C2,E3E4,C3…在x軸上.已知正方形A1B1C1D1的邊長為1,∠B1C1O60°,B1C1B2C2B3C3,則正方形A2019B2019C2019D2019的邊長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y2ax2ax3a+1)與x軸交于點AB(點A在點B的左側(cè)).

1)不論a取何值,拋物線總經(jīng)過第三象限內(nèi)的一個定點C,請直接寫出點C的坐標(biāo);

2)如圖,當(dāng)ACBC時,求a的值和AB的長;

3)在(2)的條件下,若點P為拋物線在第四象限內(nèi)的一個動點,點P的橫坐標(biāo)為h,過點PPHx軸于點H,交BC于點D,作PEACBC于點E,設(shè)ADE的面積為S,請求出Sh的函數(shù)關(guān)系式,并求出S取得最大值時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案