【題目】某公司銷售一種新型產(chǎn)品,現(xiàn)準備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=x+150,成本為50/件,無論銷售多少,每月還需支出廣告費90000元,設(shè)月利潤為w內(nèi)(元),若只在國外銷售,銷售價格為150/件,受各種不確定因素影響,成本為a/件(a為常數(shù),10a40),當月銷量為x(件)時,每月還需繳納x2元的附加費,設(shè)月利潤為w(元).

1)當x=1000時,y= /件,w內(nèi)= 元;

2)分別求出w內(nèi),wx間的函數(shù)關(guān)系式(不必寫x的取值范圍);

3)當x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.

【答案】(1)1400(2)w內(nèi)=x2+100x90000,w=x2+150ax;(3)當x=5000時,在國內(nèi)銷售的月利潤最大;a=34

【解析】

(1)x=1000代入求值即可;

(2)根據(jù)“利潤=銷售額-成本-廣告費”可求出x間的函數(shù)關(guān)系式,根據(jù)“利潤=銷售額-成本-附加費”可求出x間的函數(shù)關(guān)系式;

(3)先運用二次函數(shù)的性質(zhì)求出取最大值時x的值,再根據(jù)的最大值等于的最大值,列出關(guān)于a的方程,解方程即可求出a的值.

解:(1)①

;

2w內(nèi)=xy50)-90000=x(-x+15050)-90000=x2+100x90000,

w=x150a)-x2=x2+150ax

3w內(nèi)=x2+100x90000,x==5000時,w內(nèi)最大;

在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,

,整理,得(150a2=13600,解得a1=34,a2=284(不合題意,舍去).∴a=34.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線軸交于點和點,與軸交于點.

l)求拋物線的表達式;

2)如圖l,若點為第二象限拋物線上一動點,連接,求四邊形面積的最大值,并求此時點的坐標;

3)如圖2,在軸上是否存在一點使得為等腰三角形?若存在,請求出所有符合條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于O,CD平分ACB交O于D,過點D作PQAB分別交CA、CB延長線于P、Q,連接BD.

(1)求證:PQ是O的切線;

(2)求證:BD2=ACBQ;

(3)若AC、BQ的長是關(guān)于x的方程的兩實根,且tanPCD=,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,點B的坐標為,過點B分別作x軸、y軸垂線,垂足分別是C,A,反比例函數(shù)的圖象交AB,BC分別于點E,F.

1)求直線EF的解析式.

2)求四邊形BEOF的面積.

3)若點Py軸上,且是等腰三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16.地面B點(與E點在同一個水平線)距停車場頂部C點(A、CB在同一條直線上且與水平線垂直)1.2.試求該校地下停車場的高度AC及限高CD(結(jié)果精確到0.1米,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,,,把矩形ABCD繞點A順時針旋轉(zhuǎn),當點D落在射線CB上的點P處時,那么線段DP的長度等于_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.

(1)求拋物線的解析式;

(2)當點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),則關(guān)于該函數(shù)的下列說法正確的是(

A.該函數(shù)圖象與軸的交點坐標是

B.時,的值隨值的增大而減小

C.時,所得到的的值相同

D.的圖象先向左平移兩個單位,再向上平移個單位得到該函數(shù)圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級數(shù)學(xué)興趣小組的學(xué)生進行社會實踐活動時,想利用所學(xué)的解直角三角形的知識測量教學(xué)樓的高度,他們先在點D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達點E處,在點E處測得樓頂M的仰角為45°,已知測角儀的高AD1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,

查看答案和解析>>

同步練習(xí)冊答案