【題目】如圖,矩形ABCD中,,,把矩形ABCD繞點A順時針旋轉,當點D落在射線CB上的點P處時,那么線段DP的長度等于_________.

【答案】

【解析】畫圖,分兩種情況:點PB的右側或左側.根據(jù)旋轉和矩形性質(zhì),運用勾股定理,分別求出BPPC,便可求出PD.

(1)如圖,當PB的右側時,由旋轉和矩形性質(zhì)得:

AP=AD=5,AB=CD=3,

在直角三角形ABP中,BP=,

所以,PC=BC-BP=5-4=1,

在直角三角形PDC中,PD=,

(2)如圖,當點PB的左側時,由旋轉和矩形性質(zhì)得:

AP=AD=5,AB=CD=3,

在直角三角形APB中,PB=

所以,PC=BC+PB=5+4=9,

在在直角三角形PDC中,PD=,

所以,PD的長度為

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O的半徑為4,OA為半徑,CD為弦,OACD交于點M,將弧CD沿著CD翻折后,點A與圓心O重合,延長OAP,使AP=OA,連接PC.

(1)求CD的長;

(2)求證:PCO的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展陽光體育一小時活動,根據(jù)學校實際情況,決定開設A:踢毽子;B:籃球:C:跳繩;D:乒乓球四種運動項目.為了解學生最喜歡哪一種運動項目,隨機抽取了一部分學生進行調(diào)查,并將調(diào)查結果繪制成如兩個統(tǒng)計圖.請結合圖中的信息解答下列問題:

(1)本次共調(diào)查了多少名學生?

(2)請將兩個統(tǒng)計圖補充完整.

(3)求圖中“A”層次所在扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一果農(nóng)販賣的西紅柿,其重量與價錢成一次函數(shù)關系.小華向果農(nóng)買一竹籃的西紅柿,含竹籃稱得總重量為15公斤,付西紅柿的錢26元,若再加買0.5公斤的西紅柿,需多付1元,則空竹籃的重量為多少?( 。

A. 1.5 B. 2 C. 2.5 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學計劃從一文體公司購買甲,乙兩種型號的小黑板,經(jīng)洽談,購買一塊甲型小黑板比購買一塊乙型小黑板多用20元,且購買2塊甲型小黑板和3塊乙型小黑板共需440元.
(1)求購買一塊甲型小黑板、一塊乙型小黑板各需多少元?
(2)根據(jù)該中學實際情況,需從文體公司購買甲,乙兩種型號的小黑板共60塊,要求購買甲,乙兩種型號小黑板的總費用不超過5240元.并且購買甲型小黑板的數(shù)量不小于購買乙型小黑板數(shù)量的 .則該中學從文體公司購買甲,乙兩種型號的小黑板有哪幾種方案?哪種方案的總費用最低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如題,,點是邊的中點,點是邊上的一個動點,作于點,的延長線交線段于點.

(1)如圖①,當點于點重合時,求證:;

(2),梯形的面積為,求的函數(shù)解析式,并寫出定義域.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】星期天的早晨,小明騎自行車從家出發(fā),到離家1050米的書店買書,出發(fā)1分鐘后,他到達離家150米的地方,又過1分鐘后,小明加快了速度.如圖所示是小明從家出發(fā)后離家的路程y(米)與他騎自行車的時間x(分鐘)之間的函數(shù)圖象.根據(jù)圖象解答下列問題:
(1)直接寫出點A的坐標,并求線段AB所在的直線的函數(shù)解析式.
(2)求小明出發(fā)多長時間后,離書店還剩210米的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB= ,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A-3,-2)及點B0,4).

(1)求此一次函數(shù)的解析式;

(2)y=-5時求x的值;

(3)求此函數(shù)圖象與兩坐標軸所圍成的三角形的面積.

查看答案和解析>>

同步練習冊答案