【題目】如圖,矩形窗戶邊框ABCD由矩形AEFD,矩形BNME,矩形CFMN組成,其中AEBE=13.已知制作一個(gè)窗戶邊框的材料的總長(zhǎng)是6米,設(shè)BC=x(),窗戶邊框ABCD的面積為S(2)

(1)①用x的代數(shù)式表示AB;

②求x的取值范圍.

(2)求當(dāng)S達(dá)到最大時(shí),AB的長(zhǎng).

【答案】(1)AB=;②0x2;(2)x=1時(shí)S有最大值,此時(shí)AB=

【解析】

1)①設(shè)AE=a,根據(jù)題意列式即可得到結(jié)論;②解不等式即可得到結(jié)論;

2)根據(jù)題意求得函數(shù)的解析式S=ABBC=,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

解:(1)①∵BC=x,

AD=EF=BC=x,

AEBE=13,

∴設(shè)AE=a,

AB=CD=4aMN=BE=3a,

AB+CD+MN=11a,

∵制作一個(gè)窗戶邊框的材料的總長(zhǎng)是6米,

11a+3x=6,

,

AB=;

②∵AB0,BC0

0x0

解得 0x2;

(2)S=AB×BC

=

=+

∴當(dāng)x=1時(shí)S有最大值,

此時(shí)AB=().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

2

1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中正確的是(  )

A. 拋物線與x軸的一個(gè)交點(diǎn)為(4,0

B. 函數(shù)yax2+bx+c的最大值為6

C. 拋物線的對(duì)稱軸是x

D. 在對(duì)稱軸右側(cè),yx增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長(zhǎng)為 3 的正方形中, 點(diǎn)在射線上, ,連接交射線于點(diǎn),若沿直線翻折, 點(diǎn)落在點(diǎn)

1)如圖1,若點(diǎn)在線段上,求的長(zhǎng);

2)求的值;

3)如果題設(shè)中改為, 其它條件都不變, 試寫出翻折后與正方形公共部分的面積的關(guān)系式及自變量的取值范圍(只要寫出結(jié)論,不需寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2+bx3經(jīng)過點(diǎn)A,B,C,已知點(diǎn)A(﹣1,0),點(diǎn)B3,0

1)求拋物線的解析式

2)點(diǎn)D為拋物線的頂點(diǎn),DEx軸于點(diǎn)E,點(diǎn)N是線段DE上一動(dòng)點(diǎn)

①當(dāng)點(diǎn)N在何處時(shí),△CAN的周長(zhǎng)最?

②若點(diǎn)Mm0)是x軸上一個(gè)動(dòng)點(diǎn),且∠MNC90°,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=12,BC=8AC=6,點(diǎn)D、E分別在AB、AC上,如果以A、DE為頂點(diǎn)的三角形和以A、B、C為頂點(diǎn)的三角形相似,且相似比為

1)根據(jù)題意確定D、E的位置,畫出簡(jiǎn)圖;

2)求AD、AEDE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( 。

A. 60B. 50C. 40D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線p: 的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過點(diǎn)C′,對(duì)稱軸與y軸平行的拋物線為拋物線p的“夢(mèng)之星”拋物線,直線AC′為拋物線p的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸、y軸分別交于B、A兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn)C,連接CO,過CCDx軸于D,已知tanABO,OB4,OD2

1)求直線AB和反比例函數(shù)的解析式;

2)在x軸上有一點(diǎn)E,使CDECOB的面積相等,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案