【題目】二次函數(shù)、是常數(shù)的大致圖象如圖所示,拋物線交軸于點,.則下列說法中,正確的是(

A. abc>0 B. b-2a=0

C. 3a+c>0 D. 9a+6b+4c>0

【答案】D

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點判斷c0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.

解:A、∵根據(jù)圖示知,

拋物線開口方向向下,∴a<0;

∵拋物線交x軸于點(-1,0),(3,0),

∴對稱軸x==-=1,

∴b=-2a>0.

∵根據(jù)圖示知,拋物線與y軸交于正半軸,

∴c>0,

∴abc<0.

故本選項錯誤;

B、∵對稱軸x==-=1,

∴b=-2a,

∴b+2a=0.

故本選項錯誤;

C、根據(jù)圖示知,當(dāng)x=-1時,y=0,即a-b+c=a+2a+c=3a+c=0.

故本選項錯誤;

D、∵a<0,c>0,

∴-3a>0,4c>0,

∴-3a+4c>0,

∴9a+6b+4c=9a-12a+4c=-3a+4c>0,即9a+6b+4c>0.

故本選項正確.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象過點A(4,1)與正比例函數(shù)()的圖象相交于點B(,3),與軸相交于點C.

1)求一次函數(shù)和正比例函數(shù)的表達式;

2)若點D是點C關(guān)于軸的對稱點,且過點D的直線DEACBOE,求點E的坐標(biāo);

3)在坐標(biāo)軸上是否存在一點,使.若存在請求出點的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義感知:我們把頂點關(guān)于軸對稱,且交于軸上同一點的兩條拋物線叫做孿生拋物線,該點叫孿生拋物線共點.如圖所示的拋物線是一對孿生拋物線,其共點為點

初步運用:

判斷下列論斷是否正確?正確的在題后橫線上打“√”,錯誤的則打”:

①“孿生拋物線共點不能分布在軸上.________

②“孿生拋物線共點坐標(biāo)為________

填空:拋物線孿生拋物線的解析式為________

延伸拓展:在平面直角坐標(biāo)系中,記孿生拋物線的兩頂點分別為,,且,其共點,三點恰好構(gòu)成一個面積為的菱形,試求該孿生拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過點,下列關(guān)于此二次函數(shù)的敘述,正確的是(

A. 當(dāng)時,的值小于

B. 當(dāng)時,的值大于

C. 當(dāng)時,的值等于

D. 當(dāng)時,的值大于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,則在下列條件:①∠C=D AC=AD ③∠CBA=DBA BC=BD中任選一個能判定ABC≌△ABD的是( )

A. ①②③④ B. ②③④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為4,將此正方形置于平面直角坐標(biāo)系中,使AB邊落在X軸的正半軸上,且A點的坐標(biāo)是(1,0).

(1)直線經(jīng)過點C,且與x軸交與點E,求四邊形AECD的面積;

(2)若直線l經(jīng)過點E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;

(3)若直線l1經(jīng)過點F(﹣,0),且與直線y=3x平行,將(2)中直線l沿著y軸向上平移個單位交軸x于點M,交直線l1于點N,求NMF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過點和點,對稱軸為直線

求該二次函數(shù)的關(guān)系式和頂點坐標(biāo);

結(jié)合圖象,解答下列問題:

①當(dāng)時,求函數(shù)的取值范圍.

②當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖的轉(zhuǎn)盤被劃分成六個相同大小的扇形,并分別標(biāo)上12,34,5,6這六個數(shù)字,指針停在每個扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見解:

甲:如果指針前三次都停在了3號扇形,下次就一定不會停在3號扇形;

乙:只要指針連續(xù)轉(zhuǎn)六次,一定會有一次停在6號扇形;

丙:指針停在奇數(shù)號扇形的概率與停在偶數(shù)號扇形的概率相等;

。哼\氣好的時候,只要在轉(zhuǎn)動前默默想好讓指針停在6號扇形,指針停在6號扇形的可能性就會加大。

其中,你認為正確的見解有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩數(shù)字游戲,先由甲寫一個數(shù),再由乙猜甲寫的數(shù):要求:他們寫和猜的數(shù)字只在,、、,這五個數(shù)字中:

請用列表法或樹狀圖表示出他們寫和猜的所有情況;

如果他們寫和猜的數(shù)字相同,則稱他們心靈相通:求他們心靈相通的概率;

如果甲寫的數(shù)字記為,把乙猜的數(shù)字記為,當(dāng)他們寫和猜的數(shù)字滿足,則稱他們心有靈犀,求他們心有靈犀的概率.

查看答案和解析>>

同步練習(xí)冊答案