精英家教網 > 初中數學 > 題目詳情

問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個用足夠長的的細鐵絲制作的直角的頂點D放在直角三角板ABC的斜邊AB上,再將該直角繞點D旋轉,并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點。
問題探究:(1)在旋轉過程中,
①如圖2,當AD=BD時,線段DP、DQ有何數量關系?并說明理由。
②如圖3,當AD=2BD時,線段DP、DQ有何數量關系?并說明理由。
③根據你對①、②的探究結果,試寫出當AD=nBD時,DP、DQ滿足的數量關系為_______________(直接寫出結論,不必證明)
(2)當AD=BD時,若AB=20,連接PQ,設△DPQ的面積為S,在旋轉過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由。

圖1              圖2                 圖3

(1)① DP=DQ  ②DP=2DQ ③DP="nDQ" (2)當DP⊥AC時,x最小,最小值是,此時,S有最小值,    當點P與點A重合時,x最大,最大值是10,此時,S有最大值,

解析試題分析:此題主要考查了等腰直角三角形的性質和相似三角形的判定和性質以及二次函數最值求出等知識,熟練利用相似三角形的性質得出對應邊關系是解題關鍵.
(1)①首先利用等腰直角三角形的性質得出△ADP≌△CDQ(ASA),即可得出答案;
②首先得出△DPM∽△DQN,則  ,求出△AMD∽△BND,進而得出答案.
③根據已知得出Rt△DNP∽Rt△DMQ,則 ,則AD=nBD,求出即可;
(2)當DP⊥AC時,x最小,最小值是5 .此時,S有最小值;當點P與點A重合時,x最大,最大值為10,分別求出即可.
試題解析:(1)①DP=DQ     

理由:連接CD,
∵AD=BD,△ABC是等腰直角三角形,
∴AD=CD,∠A=∠DCQ,∠ADC=90°,∴∠ADP+∠PDC=∠CDQ+∠PDC=90°,
∴∠ADP=∠CDQ,∴△ADP≌△CDQ,∴DP=DQ.
② DP=" 2DQ" 。           
理由:如圖,過點D作DM⊥AC、DN⊥BC,垂足分別為M、N,

∴∠DMP=∠DNQ=90°,∠MDP=∠NDQ,
∴△DPM∽△DQN,∴DM:DN="DP:DQ" 。
∵∠AMD=∠DNB=90°,∠A=∠B,
∴△AMD∽△BND,∴AD:BD=DM:DN。
∴DP:DQ=AD:BD=2BD:BD=2:1,
∴DP=2DQ。                 
③DP=NQ。                 
(2)存在,設DQ=x,由(1)①知DP=x,
∴S=1/2xx=1/2x2

當DP⊥AC時,x最小,最小值是,此時,S有最小值,  
當點P與點A重合時,x最大,最大值是10,此時,S有最大值,
考點:幾何變換綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

如圖,AB∥GH∥CD,點H在BC上,AC與BD交于點G,AB=2,CD=3,則GH的長為   

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在6×8網格圖中,每個小正方形邊長均為1,點O和△ABC的頂點均與小正方形的頂點重合.

(1)以O為位似中心,在網格圖中作△A′B′C′和△ABC位似,且位似比為1∶2;
(2)連接(1)中的AA′,求四邊形AA′C′C的周長(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在13×13的網格圖中,已知△ABC和點M(1,2).
(1)以點M為位似中心,位似比為2,畫出△ABC的位似圖形△A′B′C′;
(2)寫出△A′B′C′的各頂點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,BC是半⊙O的直徑,點P是半圓弧的中點,點A是弧BP的中點,AD⊥BC于D,連結AB、PB、AC,BP分別與AD、AC相交于點E、F.
(1)BE與EF相等嗎?并說明理由;
(2)小李通過操作發(fā)現(xiàn)CF=2AB,請問小李的發(fā)現(xiàn)是否正確,若正確,請說明理由;若不正確,請寫出CF與AB正確的關系式.
(3)求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A,C的坐標分別為(-2,4),(2,1).
(1)請在如圖所示的網格平面內作出平面直角坐標系;
(2)請作出△ABC關于y軸對稱的△A′B′C′;
(3)若△ADE是△ABC關于點A的位似圖形,且E的坐標為(6,-2),則點D的坐標為     , 四邊形BCED面積是        

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:△ABD和△CBD關于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點G.
(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當AB=AD時,M是線段AG上一點,連接BM、ED、MF,MF的延長線交ED于點N,∠MBF=∠BAF,AF=AD,請你判斷線段FM和FN之間的數量關系,并證明你的判斷是正確的.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,矩形ABCD中,以對角線BD為一邊構造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.

(1)設Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1      S2+S3(用“>”、“=”、“<”填空);
(2)寫出如圖中的三對相似三角形,并選擇其中一對進行證明.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

理解與應用
小明在學習相似三角形時,在北京市義務教育課程改革實驗教材第17冊書,第37頁遇到這樣一道題:

如圖1,在△ABC中,P是邊AB上的一點,聯(lián)結CP.
要使△ACP∽△ABC,還需要補充的一個條件是____________,或_________.
請回答:
(1)小明補充的條件是____________________,或_________________.
(2)請你參考上面的圖形和結論,探究、解答下面的問題:
如圖2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度數.

查看答案和解析>>

同步練習冊答案