【題目】如圖,已知直線(xiàn)l:y=kx+b(k≠0)的圖象與x軸、y軸交于A、B兩點(diǎn),A(﹣2,0),B(0,1).
(1)求直線(xiàn)l的函數(shù)表達(dá)式;
(2)若P是x軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出當(dāng)△PAB是等腰三角形時(shí)P的坐標(biāo);
(3)在y軸上有點(diǎn)C(0,3),點(diǎn)D在直線(xiàn)l上,若△ACD面積等于4,求點(diǎn)D的坐標(biāo).
【答案】(1)y=x+1;(2)點(diǎn)P的坐標(biāo)為(﹣2﹣,0)或(﹣2,0)或(2,0)或(﹣,0);(3)點(diǎn)D的坐標(biāo)為(2,2)或(﹣6,﹣2).
【解析】
v(1)利用待定系數(shù)法求一次函數(shù)解析式解答即可;
(2)利用勾股定理列式求出AB,再分PA=AB時(shí)點(diǎn)P在點(diǎn)A的左邊和右邊兩種情況,PB=AB時(shí),根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)寫(xiě)出點(diǎn)P的坐標(biāo),PA=PB時(shí),利用∠PAB的余弦列式求出AP,再求出OP,然后寫(xiě)出點(diǎn)P的坐標(biāo)即可;
(3)分點(diǎn)D在點(diǎn)B的右側(cè)時(shí),= +列方程求出點(diǎn)D的橫坐標(biāo),再代入直線(xiàn)解析式計(jì)算即可得解;點(diǎn)D在點(diǎn)B的左側(cè)時(shí), =-列方程求出點(diǎn)D的橫坐標(biāo),再代入直線(xiàn)解析式計(jì)算即可得解.
解:
(1)∵y=kx+b經(jīng)過(guò)點(diǎn)A(﹣2,0),B(0,1),
∴,
解得,
所以,直線(xiàn)l的表達(dá)式為y=x+1;
(2)由勾股定理得,AB===,
①PA=AB時(shí),若點(diǎn)P在點(diǎn)A的左邊,則OP=2+,此時(shí)點(diǎn)P的坐標(biāo)為(﹣2﹣,0),
若點(diǎn)P在點(diǎn)A的右邊,則OP=﹣2,此時(shí)點(diǎn)P的坐標(biāo)為(﹣2,0),
②PB=AB時(shí),由等腰三角形三線(xiàn)合一的性質(zhì)得,OP=OA,
所以,點(diǎn)P的坐標(biāo)為(2,0),
③PA=PB時(shí),設(shè)PA=PB=x,
在Rt△POB中,x2=12+(2﹣x)2
∴x=
∴AP=,OP=2﹣=,
∴點(diǎn)P得到坐標(biāo)為(﹣,0),
綜上所述,點(diǎn)P的坐標(biāo)為(﹣2﹣,0)或(﹣2,0)或(2,0)或(﹣,0);
(3)∵B(0,1),C(0,3),
∴BC=3﹣1=2,
∵S△ABD=2,
∴點(diǎn)D在點(diǎn)B的右側(cè)時(shí),S△ACD=S△ABC+S△BCD,
=×2×(2+xD)=4,
解得xD=2,
此時(shí)y=×2+1=2,
點(diǎn)D的坐標(biāo)為(2,2),
點(diǎn)D在點(diǎn)A的左側(cè)時(shí),S△ACD=S△BCD﹣S△ABC,
=×2×(﹣xD﹣2)=4,
解得xD=﹣6,
此時(shí),y=﹣6×+1=﹣2,
點(diǎn)D的坐標(biāo)為(﹣6,﹣2),
綜上所述,點(diǎn)D的坐標(biāo)為(2,2)或(﹣6,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個(gè)垂足在同一直線(xiàn)上,我們把這樣的圖形叫“三垂圖”.
(1)證明:ABCD=PBPD.
(2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請(qǐng)說(shuō)明理由.
(3)已知拋物線(xiàn)與x軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)(0,﹣3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線(xiàn)上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,直線(xiàn)y=﹣x+3與y=3x﹣5相交于C點(diǎn),分別與x軸交于A、B兩點(diǎn).P、Q分別為直線(xiàn)y=﹣x+3與y=3x﹣5上的點(diǎn).
(1)求△ABC的面積;
(2)若P、Q關(guān)于原點(diǎn)成中心對(duì)稱(chēng),求P點(diǎn)的坐標(biāo);
(3)若△QPC≌△ABC,求Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線(xiàn)上有一點(diǎn)P,滿(mǎn)足S△AOP=1,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線(xiàn)上有一點(diǎn)P,滿(mǎn)足S△AOP=1,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)某十字路口的汽車(chē),它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),這三種可能性大小相同,現(xiàn)在兩輛汽車(chē)經(jīng)過(guò)這個(gè)十字路口.
(1)請(qǐng)用“樹(shù)形圖”或“列表法”列舉出這兩輛汽車(chē)行駛方向所有可能的結(jié)果;
(2)求這兩輛汽車(chē)都向左轉(zhuǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)O的兩直線(xiàn)與圓心為M(0,4),半徑為2的圓相切,切點(diǎn)分別為P、Q,PQ交y軸于點(diǎn)K,拋物線(xiàn)經(jīng)過(guò)P、Q兩點(diǎn),頂點(diǎn)為N(0,6),且與x軸交于A、B兩點(diǎn).
(1)求點(diǎn)P的坐標(biāo);
(2)求拋物線(xiàn)解析式;
(3)在直線(xiàn)y=nx+m中,當(dāng)n=0,m≠0時(shí),y=m是平行于x軸的直線(xiàn),設(shè)直線(xiàn)y=m與拋物線(xiàn)相交于點(diǎn)C、D,當(dāng)該直線(xiàn)與⊙M相切時(shí),求點(diǎn)A、B、C、D圍成的多邊形的面積(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,BC=10cm,AD=8cm.點(diǎn)P從點(diǎn)B出發(fā),在線(xiàn)段BC上以每秒3cm的速度向點(diǎn)C勻速運(yùn)動(dòng),與此同時(shí),垂直于AD的直線(xiàn)m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB、AC、AD于E、F、H,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P與直線(xiàn)m同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)當(dāng)t=2時(shí),連接DE、DF,求證:四邊形AEDF為菱形;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,所形成的△PEF的面積存在最大值,當(dāng)△PEF的面積最大時(shí),求線(xiàn)段BP的長(zhǎng);
(3)是否存在某一時(shí)刻t,使△PEF為直角三角形?若存在,請(qǐng)求出此時(shí)刻t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com