【題目】經(jīng)過(guò)某十字路口的汽車(chē),它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),這三種可能性大小相同,現(xiàn)在兩輛汽車(chē)經(jīng)過(guò)這個(gè)十字路口.
(1)請(qǐng)用“樹(shù)形圖”或“列表法”列舉出這兩輛汽車(chē)行駛方向所有可能的結(jié)果;
(2)求這兩輛汽車(chē)都向左轉(zhuǎn)的概率.

【答案】
(1)解:兩輛汽車(chē)所有9種可能的行駛方向如下:

甲汽車(chē)

乙汽車(chē)

左轉(zhuǎn)

右轉(zhuǎn)

直行

左轉(zhuǎn)

(左轉(zhuǎn),左轉(zhuǎn))

(右轉(zhuǎn),左轉(zhuǎn))

(直行,左轉(zhuǎn))

右轉(zhuǎn)

(左轉(zhuǎn),右轉(zhuǎn))

(右轉(zhuǎn),右轉(zhuǎn))

(直行,右轉(zhuǎn))

直行

(左轉(zhuǎn),直行)

(右轉(zhuǎn),直行)

(直行,直行)


(2)解:由上表知:兩輛汽車(chē)都向左轉(zhuǎn)的概率是:
【解析】(1)利用樹(shù)形圖”或“列表法”即可求出兩輛汽車(chē)行駛方向所有可能的結(jié)果;(2)根據(jù)(1)中的列表情況即可求出這兩輛汽車(chē)都向左轉(zhuǎn)的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2﹣4sinαx+2=0有兩個(gè)等根,則銳角α的度數(shù)是(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,圓規(guī)兩腳形成的角α稱(chēng)為圓規(guī)的張角.一個(gè)圓規(guī)兩腳均為12cm,最大張角150°,你能否畫(huà)出一個(gè)半徑為20cm的圓?請(qǐng)借助圖2說(shuō)明理由.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上有一點(diǎn)P,滿(mǎn)足SAOP=1,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點(diǎn)A的坐標(biāo)為(6,8),OA=OB,點(diǎn)P在線段OB上,點(diǎn)Q在y軸的正半軸上,OP=2OQ,過(guò)點(diǎn)Q作x軸的平行線分別交OA,AB于點(diǎn)E,F(xiàn).

(1)求直線AB的解析式;
(2)若四邊形POEF是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)是否存在點(diǎn)P,使△PEF為直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)某十字路口的汽車(chē),它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),這三種可能性大小相同,現(xiàn)在兩輛汽車(chē)經(jīng)過(guò)這個(gè)十字路口.
(1)請(qǐng)用“樹(shù)形圖”或“列表法”列舉出這兩輛汽車(chē)行駛方向所有可能的結(jié)果;
(2)求這兩輛汽車(chē)都向左轉(zhuǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)P在直線y=x上運(yùn)動(dòng),當(dāng)以點(diǎn)P為圓心,PA的長(zhǎng)為半徑的圓的面積最小時(shí),點(diǎn)P的坐標(biāo)為(
A.(1,﹣1)
B.(0,0)
C.(1,1)
D.( ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別是BC、CD的中點(diǎn),DE交AF于點(diǎn)M,點(diǎn)N為DE的中點(diǎn).
(1)若AB=4,求△DNF的周長(zhǎng)及sin∠DAF的值;
(2)求證:2ADNF=DEDM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市校計(jì)劃購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共200株來(lái)綠化校園,甲種樹(shù)苗每株25元,乙種樹(shù)苗每株30元,通過(guò)調(diào)查了解,甲乙兩種樹(shù)苗成活率分別是90%和95%.
(1)若購(gòu)買(mǎi)這種樹(shù)苗共用去5600元,則甲、乙兩種樹(shù)苗各購(gòu)買(mǎi)了多少株?
(2)如果要求這200株樹(shù)苗的成活率不低于93%,那么乙種樹(shù)苗至少要購(gòu)買(mǎi)多少株.

查看答案和解析>>

同步練習(xí)冊(cè)答案