【題目】直線y=﹣x+6與x軸交于A,與y軸交于B,直線CD與y軸交于C(0,2)與直線AB交于D,過D作DE⊥x軸于E(2,0).
(1)求直線CD的函數(shù)解析式;
(2)P是x軸上一動點,過P作x軸的垂線,分別與直線AB,CD交于M,N,設(shè)MN的長為d,P點的橫坐標(biāo)為t,求出d與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)t為何值時,以M,N,E,D為頂點的四邊形是平行四邊形.(直接寫出結(jié)果)
【答案】(1)直線CD的函數(shù)解析式為y=x+2;(2)當(dāng)t<2時,d=﹣2t+4;當(dāng)t≥2時,d=2t﹣4;(3)當(dāng)t的值為0或4時,以M,N,E,D為頂點的四邊形是平行四邊形.
【解析】
(1)由條件可先求得D點坐標(biāo),再利用待定系數(shù)法可求得直線CD的函數(shù)解析式;
(2)用t可分別表示出M、N的坐標(biāo),則可表示出S與t之間的關(guān)系式;
(3)由條件可知MN∥DE,利用平行四邊形的性質(zhì)可知MN=DE,由(2)的關(guān)系式可得到關(guān)于t的方程,可求得t的值.
(1)直線CD與y軸相交于C,
可設(shè)直線CD解析式為y=kx+2,把x=2代入中可得y=4,
∴D(2,4),
把D點坐標(biāo)代入中可得:2k+2=4,
∴k=1,直線CD的函數(shù)解析式為y=x+2;
(2)根據(jù)題意可以知道,OA=t,
把x=t代入y=﹣x+6中可得y=﹣t+6
∴M(t,﹣t+6),
把x=t代入y=x+2中可得y=t+2,
∴N(t,t+2),
當(dāng)t<2時,d=﹣t+6﹣(t+2)=﹣2t+4;,
當(dāng)t≥2時,d=t+2﹣(﹣t+6)=2t﹣4;
(3)由題意可知MN∥DE,
∵以M,N,E,D為頂點的四邊形是平行四邊形,
∴MN=DE=4,
∴|2t﹣4|=4,解得t=0或t=4,
即當(dāng)t的值為0或4時,以M,N,E,D為頂點的四邊形是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解題)在解分式方程時,小明的解法如下:
解:方程兩邊都乘以x﹣3,得2﹣x=﹣1﹣2①.移項得﹣x=﹣1﹣2﹣2②.解得x③.
(1)你認(rèn)為小明在哪一步出現(xiàn)了錯誤? (只寫序號),錯誤的原因是 .
(2)小明的解題步驟完善嗎?如果不完善,說明他還缺少哪一步?答: .
(3)請你解這個方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點A表示﹣3,點B表示5,點C表示m.
(1)若點A與點B同時出發(fā)沿數(shù)軸負(fù)方向運動,兩點在點C處相遇,點A的運動速度為1單位長度/秒,點B的運動速度為3單位長度/秒,求m.
(2)若A,C兩點之間的距離為2,求B、C兩點之間的距離.
(3)若m=0,在數(shù)軸上是否存在一點P,使P到A、B、C的距離和等于12?若存在,請求點P對應(yīng)的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)計算:﹣32÷(﹣3)2+3×(﹣2)+|﹣4|
(2)計算:
(3)化簡:(5a2+2a﹣1)﹣4[3﹣2(4a+a2)]
(4)化簡:3x2﹣[7x﹣(4x﹣3)﹣2x2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某月的月歷表,圖2是型的框圖,且框圖中五個小正方形與月歷表中每個小正方形大小相同.觀察并思考下列問題:
(1)用圖2框圖在月歷表中任意圈出5個數(shù)(日期),這5個數(shù)的和的最小值是 ,最大值是 .
(2)在該月歷表中可以得到 個這樣的框圖;
(3)如果型框圖中5個數(shù)的和為80,則圖二中字母a代表的數(shù)字是多少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一頂點重合的兩個大小完全相同的邊長為3的正方形ABCD和正方形AB′C′D′,如圖所示,∠DAD′=45°,邊BC與D′C′交于點O,則四邊形ABOD′的周長是( 。
A. 6 B. 6 C. 3 D. 3+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐,
如圖1是某校操場實物圖,圖2是操場示意圖,每條跑道由兩條直的跑道和兩端是半圓形的跑道組成,每兩條跑道之間的距離是相等的,最內(nèi)側(cè)半圓形跑道的半徑是a米,最外側(cè)半圓形跑道的半徑是b米,每條直道的長度都是c米。
(1)列式表示最內(nèi)側(cè)-圈跑道的長度____.(直接寫出答案, 不寫過程)
(2)列式表示整個操場所占地面的面積___ . (即最外側(cè)跑道圈住的面積,直接寫出答案,不寫過程)
(3)新學(xué)期,學(xué)校為了給學(xué)生們提供優(yōu)美的校園環(huán)境和鍛煉場所,改造并美化操場,跑道內(nèi)部的長方形部分(圖中陰影部分)設(shè)計成足球場,這部分地面鋪設(shè)草坪,其余部分(即矩形外部與最外側(cè)跑道之間的部分)鋪設(shè)塑膠.興趣小組測得a=35米,b=40米,c=100米, π取3.若草坪每平米60元,塑膠每平米80元,請你計算鋪設(shè)草坪和塑膠總共花了多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com