精英家教網 > 初中數學 > 題目詳情
(2008•煙臺)如圖,菱形ABCD的邊長為2,BD=2,E、F分別是邊AD,CD上的兩個動點,且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由;
(3)設△BEF的面積為S,求S的取值范圍.

【答案】分析:(1)利用菱形的性質和正三角形的特點進行證明;
(2)△BEF為正三角形,可解用(1)全等的結論證明;
(3)作出恰當的輔助線,構成直角三角形,根據直角三角形的特點和三角函數進行計算.
解答:(1)證明:∵菱形ABCD的邊長為2,BD=2,
∴△ABD和△BCD都為正三角形,
∴∠BDE=∠BCF=60°,BD=BC,
∵AE+DE=AD=2,而AE+CF=2,
∴DE=CF,
∴△BDE≌△BCF;

(2)解:△BEF為正三角形.
理由:∵△BDE≌△BCF,
∴∠DBE=∠CBF,BE=BF,
∵∠DBC=∠DBF+∠CBF=60°,
∴∠DBF+∠DBE=60°即∠EBF=60°,
∴△BEF為正三角形;

(3)解:設BE=BF=EF=x,
則S=•x•x•sin60°=x2
當BE⊥AD時,x最小=2×sin60°=
∴S最小=×=,
當BE與AB重合時,x最大=2,
∴S最大=×22=

點評:本題考查的是菱形的面積求法及菱形性質的綜合運用.
練習冊系列答案
相關習題

科目:初中數學 來源:2008年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2008•煙臺)如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點.將拋物線L1向右平移2個單位后得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應的函數表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關于原點的對稱點Q是否在拋物線L2上?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年山東省煙臺市中考數學試卷(解析版) 題型:解答題

(2008•煙臺)如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點.將拋物線L1向右平移2個單位后得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應的函數表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關于原點的對稱點Q是否在拋物線L2上?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2008•煙臺)如圖,菱形ABCD的邊長為2,BD=2,E、F分別是邊AD,CD上的兩個動點,且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由;
(3)設△BEF的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省泰州市姜堰市溱潼實驗中學中考數學模擬試卷(解析版) 題型:選擇題

(2008•煙臺)如圖,在Rt△ABC內有邊長分別為a,b,c的三個正方形,則a,b,c滿足的關系式是( )

A.b=a+c
B.b=ac
C.b2=a2+c2
D.b=2a=2c

查看答案和解析>>

科目:初中數學 來源:2009年山東省泰安市中考數學模擬試卷(2)(解析版) 題型:解答題

(2008•煙臺)如圖,AB是⊙O的直徑,且點C為⊙O上的一點,∠BAC=30°,M是OA上一點,過M作AB的垂線交AC于點N,交BC的延長線于點E,直線CF交EN于點F,且∠ECF=∠E.
(1)證明:CF是⊙O的切線;
(2)設⊙O的半徑為1,且AC=CE,求MO的長.

查看答案和解析>>

同步練習冊答案