精英家教網 > 初中數學 > 題目詳情
關于x的方程m2x2+(2m+3)x+1=0有兩個乘積為1的實數根,方程x2+(2a+m)x+1-m2=0有一個大于0且小于4的實數根,則a的整數值是
 
分析:先利用兩根之積為1與根的判別式求得m的值,把方程x2+(2a+m)x+1-m2=0化簡后,求得其兩根,
再由方程x2+(2a+m)x+1-m2=0有一個大于0且小于4的實數根,求得a的整數值.
解答:解:關于x的方程m2x2+(2m+3)x+1=0有兩個乘積為1的實數根,
1
m2
=1
,
解得m=±1,
方程有兩個實根,因而△=(2m+3)2-4m2≥0,
∴m=1;
則方程x2+(2a+m)x+1-m2=0就是x2+(2a+1)x=0,
即x(x+2a+1)=0,
解得x1=0,x2=-2a-1,
方程x2+(2a+m)x+1-m2=0有一個大于0且小于4的實數根,
∴得到0<-2a-1<4,
解得-
5
2
<a<-
1
2
,
∴a的整數值是-2,-1.
故答案為:-2,-1.
點評:本題根據一元二次方程根與系數的關系求得m的值,利用因式分解法解一元二次方程求得方程的解,根據方程的解的范圍求得a的范圍是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知m是整數,且滿足
2m-1>0
5-2m>-1
,則關于x的方程m2x2-4x-2=(m+2)x2+3x+4的解為( 。
A、x1=-2,x2=-
3
2
B、x1=2,x2=
3
2
C、x=-
6
7
D、x1=-2,x2=-
3
2
或x=-
6
7

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程m2x2-2(m+1)x+1=0.
(1)當m取何實數時,方程有兩個實數根;
(2)請為m選一個最小整數,使方程有兩個不相等的實數根,并求出此時這兩個實數根.

查看答案和解析>>

科目:初中數學 來源: 題型:

若關于x的方程m2x2-2x+2=0(m≠0)的一個根是2,則m的值為( 。
A、±
1
2
B、
1
2
C、±
2
2
D、±2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知m是整數,且滿足
2m-1>0
5-2m>-1
,則關于x的方程m2x2-4x-2=(m+2)x2+3x+4的解為
x1=-
3
2
,x2=-2或x=-
6
7
x1=-
3
2
,x2=-2或x=-
6
7

查看答案和解析>>

同步練習冊答案