【題目】“低碳環(huán)保,你我同行”,市區(qū)的公共自行車給市民出行帶來不少方便,我校數(shù)學社團小學員走進小區(qū)隨機選取了市民進行調(diào)查,調(diào)查的問題是“您大概多久使用一次公共自行車?”,將本次調(diào)查結(jié)果歸為四種情況:
A.每天都用 B.經(jīng)常使用 C.偶爾使用 D.從未使用
將這次調(diào)查情況整理并繪制出如下兩幅統(tǒng)計圖:
根據(jù)圖中的信息,解答下列問題:
(1)本次活動共有________位市民參與調(diào)查;
(2)補全條形統(tǒng)計圖;
(3)根據(jù)統(tǒng)計結(jié)果,若市區(qū)有26萬市民,請估算每天都用公共自行車的市民約有多少人.
【答案】200
【解析】分析:(1)根據(jù)D類人數(shù)除以D所占的百分比,可得答案;
(2)根據(jù)抽測人數(shù)乘以B類所占的百分比,C類所占的百分比,可得各類的人數(shù),根據(jù)各類的人數(shù),可得答案;
(3)根據(jù)樣本估計總體,可得答案.
詳解:(1)本次活動共參與的市民30÷15%=200人,
故答案為:200;
(2)B的人數(shù)有200×28%=56人,
C的人數(shù)有200×52%=104人,
A的人數(shù)有200-56-104-30=10人,
補全條形統(tǒng)計圖如圖:
;
(3)26×(1-28%-52%-15%)=1.3(萬人),
答:每天都用公共自行車的市民約有1.3萬人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為a,點B表示的數(shù)為b,且滿足.
(1)寫出a、b及AB的距離:a=________;b=________;AB=________.
(2)若動點P從點A出發(fā),以每秒3個點位長度沿數(shù)軸向右勻速運動,動點Q從點B出發(fā),以每秒5個單位長度向右勻速運動,若P、Q同時出發(fā),問點Q運動多少秒追上點P?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我鄉(xiāng)某校舉行全體學生“定點投籃”比賽,每位學生投40個,隨機抽取了部分學生的投籃結(jié)果,并繪制成如下統(tǒng)計圖表。
組別 | 投進個數(shù) | 人數(shù) |
A | 10 | |
B | 15 | |
C | 30 | |
D | m | |
E | n |
根據(jù)以上信息完成下列問題。
①本次抽取的學生人數(shù)為多少?
②統(tǒng)計表中的m=__________;
③扇形統(tǒng)計圖中E組所占的百分比;
④補全頻數(shù)分布直方圖;
⑤扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù);
⑥本次比賽中投籃個數(shù)的中位數(shù)落在哪一組;
⑦已知該校共有900名學生,如投進個數(shù)少于24個定為不合格,請你估計該校本次投籃比賽不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:四邊形AFCE是平行四邊形;
(2)填空:①當t為 s時,四邊形ACFE是菱形;②當t為 s時,△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,以Rt△ABC的斜邊BC為一邊在△ABC的同側(cè)作正方形BCEF,設正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,有一根木棒MN放置在數(shù)軸上,它的兩端M、N分別落在點A、B.將木棒在數(shù)軸上水平移動,當點M移動到點B時,點N所對應的數(shù)為20,當點N移動到點A時,點M所對應的數(shù)為5.(單位:cm)則木棒MN長為__________cm.
(2)一天,小民去問爺爺?shù)哪挲g,爺爺說:“我若是你現(xiàn)在這么大,你還要40年才出生呢,你若是我現(xiàn)在這么大,我已經(jīng)是老壽星了,125歲了,哈哈!”請你借助上述方法,寫出小民爺爺?shù)降资?/span>_________歲.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過C點,M為EF的中點,則下列結(jié)論正確的是
A. 當x=3時,EC<EM B. 當y=9時,EC>EM
C. 當x增大時,EC·CF的值增大。 D. 當y增大時,BE·DF的值不變。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡÷(-),然后再從-2<x≤2的范圍內(nèi)選取一個合適的x的整數(shù)值代入求值
【答案】4.
【解析】試題分析:先將原分式進行化解,化解過程中注意不為0的量,根據(jù)不為0的量結(jié)合x的取值范圍得出合適的x的值,將其代入化簡后的代數(shù)式中即可得出結(jié)論.
試題解析:原式===.
其中,即x≠﹣1、0、1.
又∵﹣2<x≤2且x為整數(shù),∴x=2.
將x=2代入中得: ==4.
考點:分式的化簡求值.
【題型】解答題
【結(jié)束】
21
【題目】解方程:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ.
(2)判斷△APQ的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com