【題目】閱讀下列材料,然后解答問題:

分解因式:x3+3x2-4.

解答:把x=1代入多項式x3+3x2-4,發(fā)現(xiàn)此多項式的值為0,由此確定多項式x3+3x2-4中有因式(x-1),于是可設x3+3x2-4=(x-1)(x2mxn),分別求出m,n的值,再代入x3+3x2-4=(x-1)(x2mxn),就容易分解多項式x3+3x2-4.這種分解因式的方法叫試根法”.

(1)求上述式子中m,n的值;

(2)請你用試根法分解因式:x3x2-16x-16.

【答案】(1)m=4,n=4;(2)(x+1)(x+4)(x-4).

【解析】

(1)先找出一個x的值,進而找出一個因式,再將多項式設成分解因式的形式,即可得出結論;

(2)先找出x=-1時,得出多項式的值,進而找出一個因式,再將多項式設成分解因式的形式,即可得出結論.

(1)原式=(x-1)(x2+mx+n)

=x3+mx2+nx-x2-mx-n

=x3+(m-1)x2+(n-m)x-n,

根據(jù)題意得 解得;

(2)x=-1代入,發(fā)現(xiàn)多項式的值為0,

∴多項式x3+x2-16x-16中有因式(x+1),

于是可設x3+x2-16x-16=(x+1)(x2+mx+n),

可化為x3+mx2+nx+x2+mx+n=x3+(m+1)x2+(m+n)x+n,

可得,解得

x3+x2-16x-16=(x+1)(x2-16)=(x+1)(x+4)(x-4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉動的支點,點E是欄桿兩段的聯(lián)結點.當車輛經過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標志牌為多少米?(結果精確到0.1.參考數(shù)據(jù):sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y1kxb的圖像經過點(0,-2),(2,2).

(1)求一次函數(shù)的表達式,并在所給直角坐標系中畫出此函數(shù)的圖像;;

(2)根據(jù)圖像回答:當x 時,y1=0;

(3)求直線y1kxb、直線y2=-2x+4與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,平行四邊形OABC的頂點C(3,4),邊OA落在x正半軸上,P為線段AC上一點,過點P分別作DE∥OC,F(xiàn)G∥OA交平行四邊形各邊如圖.若反比例函數(shù) 的圖象經過點D,四邊形BCFG的面積為8,則k的值為(
A.16
B.20
C.24
D.28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師家買了一套新房,其結構如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米?

(2)如果地磚的價格為每平方米x木地板的價格為每平方米3x,那么王老師需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊場比賽,每場比賽都要分出勝負,每隊勝一場分, 負一場得分,積分超過分才能獲得參賽資格.

(1)已知甲隊在初賽階段的積分為分,甲隊初賽階段勝、負各多少場;

(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(-3,2).

(1)直接寫出點E的坐標;

(2)在四邊形ABCD中,點P從點B出發(fā),沿“BC→CD”移動.若點P的速度為每秒1個單位長度,運動時間為t秒,回答下列問題:

①當t等于多少秒時,點P的橫坐標與縱坐標互為相反數(shù);

②求點P在運動過程中的坐標,(用含t的式子表示,寫出過程);

③當3秒<t<5秒時,設∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩直線AB,CD相交于點O,OE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度數(shù)

(2)OFOE,COF的度數(shù)

查看答案和解析>>

同步練習冊答案