【題目】如圖,下面系列圖形中第一個最小的等腰直角三角形的面積都是 1,后一個等腰直角三 角形的斜邊恰好是前一個等腰直角三角形的直角邊的 2 ,請計算每個圖形的面積,并填在 相應的空中,

圖形 1 面積_____,圖形 2 面積_____,圖形 3 的面積_____,

…………

圖形 4 的面積_____, 圖形 n 的面積_____

【答案】3,7,15,31, 2n+1-1

【解析】

根據(jù)計算分析可得,圖形 n 的面積=2n+1-1.

(1)1+2=3=22-1;(2)1+2+4=7=23-1;(3)1+2+4+8=15=24-1;(4)1+2+3+4+8+16=31=25-1;n:1+2+4+6++2n=2n+1-1.

故答案為:3,7,15,31, 2n+1-1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為
(1)求口袋中黃球的個數(shù);
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍球得2分(每次摸后放回),乙同學在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,若隨機再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形的周長為24,相鄰兩內角比為1:2,則其對角線長分別為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點P為BC邊上的任意一點(不與點B、C重合),且∠DPE=90°,PE交AB于點E,設BP=x,BE=y,則y關于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣2017)0+ cos45°﹣|﹣3|+( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點P(1,0).點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位至點P3,第4次向右跳動3個單位至點P4,第5次又向上跳動1個單位至點P5,第6次向左跳動4個單位至點P6,…….照此規(guī)律,點P第100次跳動至點P100的坐標是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形ABCD中,對角線AC、BD交于點O,動點P在線段BC上(不含點B),∠BPE= ∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.

(1)如圖②,當點P與點C重合時,求證:△BOG≌△POE;
(2)通過觀察、測量、猜想: = , 并結合圖①證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖②),若∠ACB=a,直接寫出 的值,為 . (用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD,點M,N分別在邊AD和邊BC上,點EF在線段BD上,且AM=CNDF=BE.求證:

1∠DFM=∠BEN

2)四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高鐵給我們的出行帶來了極大的方便.如圖,“和諧號”高鐵列車座椅后面的小桌板收起時,小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長BN與桌面寬AB的長度之和等于MN的長度.求小桌板桌面的寬度AB(結果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

同步練習冊答案