【題目】如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結(jié)論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BCAD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
①圖中有3個等腰直角三角形,故結(jié)論錯誤;
②根據(jù)ASA證明即可,結(jié)論正確;
③利用面積法證明即可,結(jié)論正確;
④利用三角形的中線的性質(zhì)即可證明,結(jié)論正確.
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴圖中共有3個等腰直角三角形,故①錯誤,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正確,
∵S△ABC=BCAD=ABCE,AB=AC=AE,AE=CE,
∴BCAD=CE2,故③正確,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了進一步了解某校初中學生的體質(zhì)健康狀況,對八年級的部分學生進行了體質(zhì)監(jiān)測,同時統(tǒng)計了每個人的得分(假設(shè)這個得分為,滿分為50分).體質(zhì)檢測的成績分為四個等級:優(yōu)秀、良好、合格、不合格.根據(jù)調(diào)查結(jié)果繪制了下列兩福不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息回答以下問題:
(1)補全上面的扇形統(tǒng)計圖和條形統(tǒng)計圖;
(2)被測試的部分八年級學生的體質(zhì)測試成績的中位數(shù)落在 等級:
(3)若該校八年級有1400名學生,估計該校八年級體質(zhì)為“不合格”的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△AOP為等邊三角形,A(0,2),點B為y軸上一動點,以BP為邊作等邊△PBC,延長CA交x軸于點E.
(1)求證:OB=AC;
(2)∠CAP的度數(shù)是;
(3)當B點運動時,猜想AE的長度是否發(fā)生變化?并說明理由;
(4)在(3)的條件下,在y軸上存在點Q,使得△AEQ為等腰三角形,請寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.
(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;
(II)如圖②,當α=60°時,求點C′的坐標;
(III)當點B,D′,C′共線時,求點C的坐標(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了改進銀行的服務(wù)質(zhì)量,隨機抽隨機抽查了名顧客,統(tǒng)計了顧客在窗口辦理業(yè)務(wù)所用的時間(單位:分鐘)下圖是這次調(diào)查得到的統(tǒng)計圖。
請你根據(jù)圖中的信息回答下列問題:
(1)求辦理業(yè)務(wù)所用的時間為分鐘的人教;
(2)補全條形統(tǒng)計圖;
(2)求這名顧客辦理業(yè)務(wù)所用時間的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標,設(shè)過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋中,紅色、黑色、白色的球共有個,除顏色外,形狀、大小、質(zhì)地等完全相同.小剛通過多次摸球?qū)嶒灪蟀l(fā)現(xiàn)其中摸到紅色、黑色球的頻率穩(wěn)定在和,則口袋中白色球的個數(shù)很可能是( )個.
A. 48 B. 60 C. 18 D. 54
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com