【題目】已知:二次函數(shù)圖象的頂點坐標是(3,5),且拋物線經(jīng)過點A(1,3).
(1)求此拋物線的表達式;
(2)如果點A關(guān)于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(3,0),對稱軸是直線x=﹣2,與y軸的交點(0,﹣3).
(1)求拋物線與x軸的另一個交點坐標;
(2)求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠BCA=90,∠A=60,CD是角平分線,在CB上截取CE=CA.
求證:⑴ DE=BE;
⑵ 若AC=1,AD=,試求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】密碼的使用在現(xiàn)代社會是極其重要的.現(xiàn)有一種密碼的明文(真實文),其中的字母是按計算機鍵盤順序分別與26個自然數(shù)1,2,3……25,26對應(yīng)(見下表).設(shè)明文的任一字母所對應(yīng)的自然數(shù)為x,且通過某種規(guī)定的對應(yīng)運算把x轉(zhuǎn)化為對應(yīng)的自然數(shù)x',x'對應(yīng)的字母為密文.
例如,有一種譯碼方法按照以下變換實現(xiàn):
x→x',其中x'是(3x+2)被26除所得余數(shù)與1之和(1≤x≤26).若x=1時,x'=6,即明文Q譯為密文Y;
若x=10時,x'=7,即明文P譯為密文U.現(xiàn)有某種變換,將明文字母對應(yīng)的自然數(shù)x變換為密文字母對應(yīng)的自然數(shù)x':x→x',x'為(3x+m)被26除所得余數(shù)與1之和(1≤x≤26,1≤m≤26).已知運用此變換,明文V譯為密文M.
(1)求此變換中m的值;
(2)求明文VKHA對應(yīng)的密文.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中給定下面幾組條件:
①BC=4cm,AC=5cm,∠ACB=30°;
②BC=4cm,AC=3cm,∠ABC=30°;
③BC=4cm,AC=5cm,∠ABC=90°;
④BC=4cm,AC=5cm,∠ABC=120°.
若根據(jù)每組條件畫圖,則能夠唯一確定的是___________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分線分別交AC、AD于E、F兩點,M為EF的中點,延長AM交BC于點N,連接DM,NE.下列結(jié)論:①AE=AF;②AM⊥EF;③△AEF是等邊三角形;④DF=DN,⑤AD∥NE.其中正確的結(jié)論有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標系中,一次函數(shù)的圖像交x軸于點A,交y軸于點B,點C是點A關(guān)于y軸對稱的點,過點C作y軸平行的射線CD,交直線AB與點D,點P是射線CD上的一個動點.
(1)求點A、B的坐標.
(2)如圖2,將△ACP沿著AP翻折,當點C的對應(yīng)點E落在直線AB上時,求點P的坐標.
(3)若直線OP與直線AD有交點,不妨設(shè)交點為Q(不與點D重合),連接CQ,是否存在點P,使得S△CPQ =2S△DPQ,若存在,請直接寫出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com