【題目】某廠按用戶的月需求量x (件)完成一種產(chǎn)品的生產(chǎn),其中x>0.每件的售價(jià)為18萬元,每件的成本為y (萬元),y與x的關(guān)系式為(a,b為常數(shù)).經(jīng)市場調(diào)研發(fā)現(xiàn),月需求量x與月份n (n為整數(shù),1≤n≤12)的關(guān)系式為x=n2-13n+72,且得到了下表中的數(shù)據(jù).
月份n(月) | 1 | 2 |
成本y(萬元/件) | 11 | 12 |
(1)請直接寫出a,b的值;
(2)設(shè)第n個(gè)月的利潤為w(萬元),請求出W與n的函數(shù)關(guān)系式,并求出這一年的12個(gè)月中,哪個(gè)月份的利潤為84萬元?
(3)在這一年的前8個(gè)月中,哪個(gè)月的利潤最大?最大利潤是多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機(jī)器人來代替人工分揀.已知購買甲型機(jī)器人1臺(tái),乙型機(jī)器人2臺(tái),共需14萬元;購買甲型機(jī)器人2臺(tái),乙型機(jī)器人3臺(tái),共需24萬元.
(1)求甲、乙兩種型號(hào)的機(jī)器人每臺(tái)的價(jià)格各是多少萬元;
(2)已知甲型和乙型機(jī)器人每臺(tái)每小時(shí)分揀快遞分別是1200件和1000件,該公司計(jì)劃購買這兩種型號(hào)的機(jī)器人共8臺(tái),總費(fèi)用不超過41萬元,并且使這8臺(tái)機(jī)器人每小時(shí)分揀快遞件數(shù)總和不少于8300件,則該公司有哪幾種購買方案?哪個(gè)方案費(fèi)用最低,最低費(fèi)用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以下各圖都是由同樣大小的圖形①按一定規(guī)律組成,其中第①個(gè)圖形中共有1個(gè)完整菱形,第②個(gè)圖形中共有5個(gè)完整菱形,第③個(gè)圖形中共有13個(gè)完整菱形,…,則第⑦個(gè)圖形中完整菱形的個(gè)數(shù)為( 。
A. 83B. 84C. 85D. 86
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A城氣象臺(tái)測得臺(tái)風(fēng)中心在A城正西方向320 km的B處,以每小時(shí)40 km的速度向北偏東60°的BF方向移動(dòng),距離臺(tái)風(fēng)中心200 km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.
(1)A城是否受到這次臺(tái)風(fēng)的影響?為什么?
(2)若A城受到這次臺(tái)風(fēng)影響,那么A城遭受這次臺(tái)風(fēng)影響有多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分線BD交邊AC于點(diǎn)D.
(1)求證:△BCD為等腰三角形;
(2)若∠BAC的平分線AE交邊BC于點(diǎn)E,如圖2,求證:BD+AD=AB+BE;
(3)若∠BAC外角的平分線AE交CB延長線于點(diǎn)E,請你探究(2)中的結(jié)論是否仍然成立?直接寫出正確的結(jié)論.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=8,AD=12,M是AD邊的中點(diǎn),P是AB邊上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),PM的延長線交射線CD于Q點(diǎn),MN⊥PQ交射線BC于N點(diǎn)。
(1)若點(diǎn)N在BC之間時(shí),如圖:
①求證:∠NPQ=∠PQN;
②請問是否為定值?若是定值,求出該定值;若不是,請舉反例說明;
(2)當(dāng)△PBN與△NCQ的面積相等時(shí),求AP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com