【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫(xiě)出中點(diǎn)四邊形EFGH的形狀.(不必證明

【答案】(1證明見(jiàn)解析;(2四邊形EFGH是菱形;(3四邊形EFGH是正方形.

【解析】

試題分析:(1如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.

(2四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.

(3四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.

試題解析:(1證明:如圖1中,連接BD.

∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.

(2四邊形EFGH是菱形.

證明:如圖2中,連接AC,BD.

∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,AP=PB,APC=BPD,PC=PD,∴△APC≌△BPD,∴AC=BD∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.

(3四邊形EFGH是正方形.

證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.

∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:

A

B

進(jìn)價(jià)(萬(wàn)元/套)

1.5

1.2

售價(jià)(萬(wàn)元/套)

1.65

1.4

該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬(wàn)元,全部銷(xiāo)售后可獲毛利潤(rùn)9萬(wàn)元。

(毛利潤(rùn)=(售價(jià) - 進(jìn)價(jià))×銷(xiāo)售量)

(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?

(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的總資金不超過(guò)69萬(wàn)元,問(wèn)A種設(shè)備購(gòu)進(jìn)數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn) O 為坐標(biāo)原點(diǎn),點(diǎn) A x 軸負(fù)半軸上,點(diǎn) B、C 分別在 x 軸、y 軸正半軸上,且 OB=2OAOBOC=OCOA=2

1)求點(diǎn) C 的坐標(biāo);

2)點(diǎn) P 從點(diǎn) A 出發(fā)以每秒 1 個(gè)單位的速度沿 AB 向點(diǎn) B 勻速運(yùn)動(dòng),同時(shí)點(diǎn) Q 從點(diǎn) B 出發(fā) 以每秒 3 個(gè)單位的速度沿 BA 向終點(diǎn) A 勻速運(yùn)動(dòng),當(dāng)點(diǎn) Q 到達(dá)終點(diǎn) A 時(shí),點(diǎn) P、Q 均停止運(yùn) 動(dòng),設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為 t 秒(t0),線段 PQ 的長(zhǎng)度為 y,用含 t 的式子表示 y,并寫(xiě)出 相應(yīng)的 t 的范圍;

3)在(2)的條件下,過(guò)點(diǎn) P x 軸的垂線 PM,PM=PQ,是否存在 t 值使點(diǎn) O PQ 中 點(diǎn)?若存在求 t 值并求出此時(shí)三角形 CMQ 的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,四邊形ABCD的四個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)(小正方形的頂點(diǎn)叫格點(diǎn))上,連接BD.

(1)利用格點(diǎn)在圖中畫(huà)出ABDAD邊上的高,垂足為H.

(2)①畫(huà)出將ABD先向右平移2格,再向上平移2格得到的A1B1D1;

②平移后,求線段AB掃過(guò)的部分所組成的封閉圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,A FCE,且交BC于點(diǎn)F

(1)求證:ABF≌△CDE;

(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EABCD的邊CD的中點(diǎn),延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線MN與直線PQ相交于O,點(diǎn)A在射線OP上,點(diǎn)B在射線OM上.

(1)如圖1,已知AG、BG分別是∠BAO和∠ABO角的平分線,求的度數(shù);

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,∠CED= 度;

(3)如圖3,,過(guò)點(diǎn)B作直線CDMN,G為射線BD上一點(diǎn),OF平分∠QOG,OEOF,探索的大小是否發(fā)生變化?若不變,求其值;若改變,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE∥BF,∠1與∠2互補(bǔ).

1)試說(shuō)明:FG∥AB;

2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,3),B(5,3).

(1)在y軸的負(fù)方向上有一點(diǎn)C(如圖),使得四邊形AOCB的面積為18,求C點(diǎn)的坐標(biāo);

(2)將ABO先向上平移2個(gè)單位,再向左平移4個(gè)單位,得A1B1O1

①直接寫(xiě)出B1的坐標(biāo):B1   

②求平移過(guò)程中線段OB掃過(guò)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案