【題目】如圖, 中,,,為線段上一動(dòng)點(diǎn)(不與點(diǎn),重合),連接,作,交線段于.以下四個(gè)結(jié)論:
①;
②當(dāng)為中點(diǎn)時(shí);
③當(dāng)時(shí);
④當(dāng)為等腰三角形時(shí).
其中正確的結(jié)論是_________(把你認(rèn)為正確結(jié)論的序號都填上)
【答案】①②③
【解析】
利用三角形外角的性質(zhì)可判斷①;利用等腰三角形三線合一的性質(zhì)得到∠ADC=90,求得∠EDC=50,可判斷②;利用三角形內(nèi)角和定理求得∠DAC=70=∠DEA,證得DA=DE,可證得,可判斷③;當(dāng)為等腰三角形可分類討論,可判斷④.
①∠ADC是的一個(gè)外角,
∴∠ADC =∠B+∠BAD=40+∠BAD,
又∠ADC =40+∠CDE,
∴∠CDE=∠BAD,故①正確;
②∵,為中點(diǎn),
∴,AD⊥BC,
∴∠ADC=90,
∴∠EDC=90,
∴,
∴DE⊥AC,故②正確;
③當(dāng)時(shí)
由①得∠CDE=∠BAD,
在中,∠DAC=,
在中,∠AED=,
∴DA=ED,
在和中,,
∴,
∴,故③正確;
④當(dāng)AD=AE時(shí),∠AED=∠ADE=40°,
∴∠AED=∠C=40°,
則DE∥BC,不符合題意舍去;
當(dāng)AD=ED時(shí),∠DAE=∠DEA,
同③,;
當(dāng)AE=DE時(shí),∠DAE=∠ADE=40°,
∴∠BAD,
∴當(dāng)△ADE是等腰三角形時(shí),
∴∠BAD的度數(shù)為30°或60°,故④錯(cuò)誤;
綜上,①②③正確,
故答案為:①②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)開展“社會(huì)主義核心價(jià)值觀”演講比賽活動(dòng),九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問題:
(1)根據(jù)圖示求出表中的、、
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九(1) | 85 | ||
九(2) | 85 | 100 |
, , .
(2)小明同學(xué)已經(jīng)算出了九(2)班復(fù)賽成績的方差:
,請你求出九(1)班復(fù)賽成績的方差;
(3)根據(jù)(1)、(2)中計(jì)算結(jié)果,分析哪個(gè)班級的復(fù)賽成績較好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn)是坐標(biāo)軸上兩點(diǎn),點(diǎn)為坐標(biāo)軸上一點(diǎn),若三角形的面積為,則點(diǎn)坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)若∠B=30°,求證:以A、O、D、E為頂點(diǎn)的四邊形是菱形.
(2)若AC=6,AB=10,連結(jié)AD,求⊙O的半徑和AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點(diǎn)C在⊙O上,∠AOB=80°
(1)若點(diǎn)C在優(yōu)弧BD上,求∠ACD的大;
(2)若點(diǎn)C在劣弧BD上,直接寫出∠ACD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,內(nèi)角與外角的平分線相交于點(diǎn),,交于,交于,連接、,下列結(jié)論:①;②;③垂直平分;④.其中正確的是( )
A. ①②④B. ①③④C. ②③④D. ①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com