【題目】如圖,在平面直角坐標系中,為坐標原點,點和點是坐標軸上兩點,點為坐標軸上一點,若三角形的面積為,則點坐標為__________.

【答案】

【解析】

根據(jù)點Cm,n)(m≠n)為坐標軸上一點,得到點C的橫縱坐標有一個為0,根據(jù)三角形的面積公式列方程即可得到結論.

解:

A點的坐標為 ,B點的坐標為

OA=3OB=2,

C點在x軸上的坐標為

BC=

SABC= ×3×=3

=2

=4, =0

∵(0,0)點是坐標原點,

C點在x軸上的坐標為 ;

C點在y軸上的坐標為

SABC=× ×2=3

=3

解得: =6, =0,

∵(0,0)點是坐標原點,

C點在y軸上的坐標為
C點坐標為(40)或(0,6.
故答案為:(06)或(4,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.

(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=4cm,點E、F同時從C點出發(fā),以1cm/s的速度分別沿CB﹣BA、CD﹣DA運動,到點A時停止運動.設運動時間為t(s),△AEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線經過第一象限內一點A,且OA4過點AABx軸于點B,將△ABO繞點B逆時針旋轉60°得到△CBD,則點C的坐標為(

A. ,2 B. 1

C. -2, D. -1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點EAB延長線上一點,連接并延長交AD延長線于點,,.(1)求證:

1

2)如圖2,連接于點,連接,若的角平分線,的角平分線,過點于點, 求證:;

2備用圖

3)在(2)的條件下,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好改善河流的水質,治污公司決定購買10臺污水處理設備現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如下表:經調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少6萬元.

A

B

價格萬元

a

b

處理污水量

240

200

a,b的值;

治污公司經預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀解題過程,回答問題.

如圖,OC在∠AOB,AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).

:O點作射線OM,使點M,O,A在同一直線上.

因為∠MOD+BOD=90°,BOC+BOD=90°,所以∠BOC=MOD,

所以∠AOD=180°-BOC=180°-30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=DOC=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC.若∠A=22.5°,CD=8cm,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案