【題目】如圖,把△ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到△ABC′,點(diǎn)A(-12),B(-31),C(0,-1)的對(duì)應(yīng)點(diǎn)分別是A′,B′,C′.

(1)在圖中畫(huà)出△ABC′;

(2)分別寫(xiě)出點(diǎn)A′,B′,C′的坐標(biāo);

(3)求△ABC′的面積.

【答案】(1)圖形見(jiàn)解析;(2)A′(2,4),B′(0,3),C′(3,1).(3)SABC

【解析】

1)把△ABC的各頂點(diǎn)分別向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到的平移后的各點(diǎn),順次連接各頂點(diǎn)即可得到△ABC′;

2)根據(jù)各點(diǎn)距離坐標(biāo)軸的距離和各象限內(nèi)點(diǎn)的符號(hào)可寫(xiě)出點(diǎn)A′,B′,C′的坐標(biāo);

3)△ABC′的面積等于邊長(zhǎng)為3的正方形的面積減去直角邊長(zhǎng)為1,2的直角三角形的面積,直角邊長(zhǎng)為2,3的直角三角形的面積,直角邊長(zhǎng)為13的直角三角形的面積.

1)如圖;

2A′(2,4),B′(0,3),C′(3,1);

3平方單位,即△ABC′的面積為平方單位.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB72°30′,射線OC在∠AOB內(nèi),∠BOC30°,

1)∠AOC_______;

2)在圖中畫(huà)出∠AOC的一個(gè)余角,要求這個(gè)余角以O為頂點(diǎn),以∠AOC的一邊為邊.圖中你所畫(huà)出的∠AOC的余角是______,這個(gè)余角的度數(shù)等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在矩形ABCD中,E是BC上一點(diǎn),AF⊥DE于點(diǎn)F.

(1)求證:DFCD=AFCE.
(2)若AF=4DF,CD=12,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)A出發(fā),沿AB方向勻速運(yùn)動(dòng),速度為1cm/s;過(guò)點(diǎn)P作直線PF∥AD,PF交CD于點(diǎn)F,過(guò)點(diǎn)F作EF⊥BD,且與AD、BD分別交于點(diǎn)E、Q;連接PE,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s)(0<t<10).
解答下列問(wèn)題:
(1)填空:AB= cm;
(2)當(dāng)t為何值時(shí),PE∥BD;
(3)設(shè)四邊形APFE的面積為y(cm2
①求y與t之間的函數(shù)關(guān)系式;
②若用S表示圖形的面積,則是否存在某一時(shí)刻t,使得S四邊形APFE= S菱形ABCD?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的線段AB及點(diǎn)P,給出如下定義:

若點(diǎn)P滿足PA=PB,則稱P為線段AB的“軸點(diǎn)”,其中,當(dāng)0°<∠APB<60°時(shí),稱P為線段AB的“遠(yuǎn)軸點(diǎn)”;當(dāng)60°≤∠APB≤180°時(shí),稱P為線段AB的“近軸點(diǎn)”.

(1)如圖1,點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),則在,, 中,線段AB的“近軸點(diǎn)”是 .

(2)如圖2,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)By軸正半軸上,且∠OAB=30°.

①若P為線段AB的“遠(yuǎn)軸點(diǎn)”,直接寫(xiě)出點(diǎn)P的橫坐標(biāo)t的取值范圍 ;

②點(diǎn)Cy軸上的動(dòng)點(diǎn)(不與點(diǎn)B重合且BCAB),若Q為線段AB的“軸點(diǎn)”,當(dāng)線段QBQC的和最小時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將圓心角都是90°的扇形OAB和扇形OCD疊放在一起,連接AC、BD.

(1)將△AOC經(jīng)過(guò)怎樣的圖形變換可以得到△BOD?
(2)若 的長(zhǎng)為πcm,OD=3cm,求圖中陰影部分的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)計(jì)算并觀察下列各式:

1個(gè):(ab)(a+b)______;

2個(gè):(ab)(a2+ab+b2)______;

3個(gè):(ab)(a3+a2b+ab2+b3)_______;

……

這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________

(3)利用(2)的猜想計(jì)算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應(yīng)用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》主要講述了以測(cè)量問(wèn)題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問(wèn)題:今有池方一丈,葭生其中央,出水一尺引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”

譯文:“今有正方形水池邊長(zhǎng)為1丈,有棵蘆葦生長(zhǎng)在它長(zhǎng)出水面的部分為1將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接問(wèn)水深,蘆葦?shù)拈L(zhǎng)度分別是多少尺?”(備注:1=10)

如果設(shè)水深為,那么蘆葦長(zhǎng)用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上點(diǎn)A對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且多項(xiàng)式﹣x2yxy22xy+5的次數(shù)為a,常數(shù)項(xiàng)為b

1)直接寫(xiě)出a、b的值;

2)數(shù)軸上點(diǎn)AB之間有一動(dòng)點(diǎn)P(不與A、B重合),若點(diǎn)P對(duì)應(yīng)的數(shù)為x,試化簡(jiǎn):|2x+6|+4|x5||6x|+|3x9|

查看答案和解析>>

同步練習(xí)冊(cè)答案