【題目】如圖,在△ABC中,∠C=90°,BC=3,AC=5,點D為線段AC上一動點,將線段BD繞點D逆時針旋轉(zhuǎn)90°,點B的對應點為E,連接AE,則AE長的最小值為_____.
【答案】
【解析】
由旋轉(zhuǎn)的性質(zhì)可知BD=DE,∠C=90°,則容易想到構(gòu)造一個直角三角形與Rt△BCD全等,即過E點作EH⊥AD于點H,設CD=x,則可用x表示AE的長,從而判斷什么時候AE取得最小值.
設CD=x,則AD=5﹣x,
過點E作EH⊥AD于點H,如圖:
由旋轉(zhuǎn)的性質(zhì)可知BD=DE,
∵∠ADE+∠BDC=90°,∠BDC+∠CBD=90°,
∴∠ADE=∠CBD,
又∵∠EHD=∠C,
∴△BCD≌△DHE,
∴EH=CD=x,DH=BC=3.
∵AD=5﹣x,
∴AH=AD﹣DH=5﹣x﹣3=2﹣x,
∵在Rt△AEH中,AE2=AH2+EH2=(2﹣x)2+x2=2x2+4x+4=2(x﹣1)2+2,
所以當x=1時,AE2取得最小值2,即AE取得最小值.
故答案是:.
科目:初中數(shù)學 來源: 題型:
【題目】今年,6月7日為端午節(jié).在端午節(jié)前夕,三位同學到某超市調(diào)研一種進價為2元的粽子的銷售情況.請根據(jù)小麗提供的信息,解答小華和小明提出的問題.
小麗 | 每個定價3元,每天能賣出500個.若這種粽子的售價每上漲0.1元,其銷售量將減少10個 |
小華 | 照你說,若要實現(xiàn)每天800元的銷售利潤,那該如何定價?別忘了,根據(jù)物價局規(guī)定,售價不能超過進價的. |
小明 | 若按照物價局規(guī)定的最高售價,每天的利潤會超過800元嗎?請判斷并說明理由 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中對角線AC與BD相交于點O,CE⊥BD,垂足為點E,CE=5,且EO=2DE,則ED的長為( )
A.B.2C.1D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B(0,3),且其對稱軸為直線x=﹣1.
(1)求此拋物線的解析式.
(2)若點Q是對稱軸上一動點,當OQ+BQ最小時,求點Q的坐標.
(3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求△PAB面積的最大值,并求出此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:
第一步:分別以點A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;
第二步:連接OA,OB;
第三步:以O為圓心,OA長為半徑作⊙O,交l于P1,P2;
所以圖中P1,P2即為所求的點.
(1)在圖②中,連接P1A,P1B,證明∠AP1B=30°;
(2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).
(3)已知矩形ABCD,若BC=2.AB=m,P為AD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點H(2,0),經(jīng)過點A(1,1),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,在線段OC(端點除外)上是否存在一點N,直線NA交拋物線于另一點B,滿足BC=BN?若存在,請求出點N的坐標;若不存在,請說明理由;
(3)如圖2,過點P(﹣3,0)作直線交拋物線于點F、G,FM⊥x軸于M,GN⊥x軸于N,求PMPN的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:如圖,過圓外一點作圓的切線.
已知:P為⊙O外一點.
求作:經(jīng)過點P的⊙O的切線.
小敏的作法如下:如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點C.
(2)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點.
(3)作直線PA,PB.
所以直線PA,PB就是所求作的切線.
老師認為小敏的作法正確.
請回答:
(1)連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是_________.
(2)如果⊙O的半徑等于3,點P到切點的距離為4,求點A與點B之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=2x2﹣4x﹣6.
(1)求這個二次函數(shù)圖象的頂點坐標及對稱軸;
(2)指出該圖象可以看作拋物線y=2x2通過怎樣平移得到?
(3)在給定的坐標系內(nèi)畫出該函數(shù)的圖象,并根據(jù)圖象回答:當x取多少時,y隨x增大而減;當x取多少時,y<0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過點,交y 軸于點C:
(1)求拋物線的頂點坐標.
(2)點為拋物線上一點,是否存在點使,若存在請直接給出點坐標;若不存在請說明理由.
(3)將直線繞點順時針旋轉(zhuǎn),與拋物線交于另一點,求直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com