【題目】如圖,在菱形ABCD中,∠BCD=110°,AB的垂直平分線交對角線AC于點F,E為垂足,連接DF,則∠CDF等于( 。
A. 15° B. 25° C. 45° D. 55°
【答案】A
【解析】
如圖,連接BF,根據(jù)菱形的性質(zhì)可得∠CAB=∠CAD=55°,∠ADC=∠ABC=70°,再根據(jù)線段垂直平分線的性質(zhì)可得FB=FA,從而可得∠FBA=∠FAB=55°,根據(jù)軸對稱性繼而可得∠ADF=∠ABF=55°,再根據(jù)∠CDF=∠CDA﹣∠ADF即可求得答案.
如圖,連接BF,
∵四邊形是菱形,
∴∠BCD=∠BAD=110°,
∴∠CAB=∠CAD=55°,∠ADC=∠ABC=70°,
∵EF垂直平分線段AB,
∴FB=FA,
∴∠FBA=∠FAB=55°,
∴B、D關于直線AC對稱,
∴∠ADF=∠ABF=55°,
∴∠CDF=∠CDA﹣∠ADF=70°﹣55°=15°,
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,D在AB同側,∠CAB=∠DBA,下列條件中不能判定△ABD≌△BAC的是( )
A. ∠D=∠C B. BD=AC C. ∠CAD=∠DBC D. AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且m>n.(以上長度單位:cm)
(1)用含m,n的代數(shù)式表示所有裁剪線(圖中虛線部分)的長度之和;
(2)觀察圖形,發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 ;
(3)若每塊小矩形的面積為10cm2,四個正方形的面積和為58cm2,試求(m+n)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC、BD是四邊形ABCD的對角線,若E、F、G、H分別是BD、BC、AC、AD的中點,順次連接E、F、G、H四點,得到四邊形EFGH,則下列結論不正確的是( 。
A.四邊形EFGH一定是平行四邊形B.當AB=CD時,四邊形EFGH是菱形
C.當AC⊥BD時,四邊形EFGH是矩形D.四邊形EFGH可能是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解同學們對垃圾分類知識的知曉程度,增強同學們的環(huán)保意識,普及垃圾分類及投放的相關知識.某校環(huán)保社團的同學們設計了“垃圾分類知識及投放情況”的問卷,并在本校隨機抽取了若干名同學進行了問卷測試,根據(jù)測試成績分布情況,他們將全部成績分成A,B,C,D四組,并繪制了如下不完整的統(tǒng)計圖表:
組別 | 分數(shù)段 | 頻數(shù) | 頻率 |
A | 60≤x<70 | a | b |
B | 70≤x<80 | 24 | 0.4 |
C | 80≤x<90 | 18 | c |
D | 90≤x<100 | 12 | 0.2 |
請根據(jù)上述統(tǒng)計圖表,解答下列問題:
(1)共抽取了多少名學生進行問卷測試?
(2)補全頻數(shù)分布直方圖;
(3)如果測試成績不低于80分者為“優(yōu)秀”,請你估計全校2000名學生中,“優(yōu)秀”等次的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,經(jīng)過A,C兩點分別作AE⊥BD,CF⊥BD,E,F為垂足.
(1)求證:△AED≌△CFB;
(2)求證:四邊形AFCE是平行四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,直線l切⊙O于A,在直線l上取點B,AB=4.
(1)請用無刻度的直尺和圓規(guī),過點B作直線m⊥l,交⊙O于C、D(點D在點C的上方);(保留作圖痕跡,不要求寫作法)
(2)求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在等邊△ABC中,D、E分別在AB、AC上,且AD=CE,BE、CD相交于點P.
(1)說明△ADC≌△CEB的理由;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC交于點D,E是BC的中點,連接BD,DE.
(1)若,求sinC;
(2)求證:DE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com