【題目】如圖,已知⊙O的半徑為5,直線l切⊙O于A,在直線l上取點B,AB=4.
(1)請用無刻度的直尺和圓規(guī),過點B作直線m⊥l,交⊙O于C、D(點D在點C的上方);(保留作圖痕跡,不要求寫作法)
(2)求BC的長.
【答案】(1)答案見解析;(2)2.
【解析】試題分析:(1)利用基本作圖(過一點作已知直線的垂線)作直線m得到CD;
(2)作OH⊥CD于H,連接OA、OD,如圖,利用垂徑定理得到DH=CH,則根據(jù)切線的性質(zhì)得OA⊥l,易得四邊形OABH為正方形,所以OH=AB=4,BH=OA=5,然后利用勾股定理計算出DH=3,則CH=3,所以BC=BH﹣CH=2.
試題解析:解:(1)如圖,CD為所作;
(2)作OH⊥CD于H,連接OA、OD,如圖,則DH=CH.∵直線l切⊙O于A,∴OA⊥l,易得四邊形OABH為正方形,∴OH=AB=4,BH=OA=5.在Rt△ODH中,DH==3,∴CH=3,∴BC=BH﹣CH=5﹣3=2.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BCD=110°,AB的垂直平分線交對角線AC于點F,E為垂足,連接DF,則∠CDF等于( 。
A. 15° B. 25° C. 45° D. 55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某校組織的“交通安全宣傳教育月”活動中,八年級數(shù)學興趣小組的同學進行了如下的課外實踐活動.具體內(nèi)容如下:在一段筆直的公路上選取兩點A、B,在公路另一側(cè)的開闊地帶選取一觀測點C,在C處測得點A位于C點的南偏西45°方向,且距離為100米,又測得點B位于C點的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時,興趣小組在觀察中測得一輛小轎車經(jīng)過該路段用時13秒,請你幫助他們算一算,這輛小車是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計算結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的,若小方格邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點,的坐標分別為,.
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;
(2)作出三角形關于y 軸對稱的三角形;
(3)判斷的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:設a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a+b化為平方式的方法.
請你仿照小明的方法探索并解決下列問題.
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,則a= ,b= ;
(2)求7+4的算術平方根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個小方格都是邊長為1個單位的小正方形,點A、B、C都是格點每個小方格的頂點叫格點,其中,,.
外接圓的圓心坐標是______;
外接圓的半徑是______;
已知與點D、E、F都是格點成位似圖形,則位似中心M的坐標是______;
請在網(wǎng)格圖中的空白處畫一個格點,使∽,且相似比為:1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com