【題目】如圖,在平面直角坐標系中,每個小方格都是邊長為1個單位的小正方形,點A、B、C都是格點每個小方格的頂點叫格點,其中,,.
外接圓的圓心坐標是______;
外接圓的半徑是______;
已知與點D、E、F都是格點成位似圖形,則位似中心M的坐標是______;
請在網(wǎng)格圖中的空白處畫一個格點,使∽,且相似比為:1.
【答案】(1)(2,6);(2); (3)(3,6) ;(4)見解析.
【解析】
(1)根據(jù)作圖,結(jié)合網(wǎng)格特點解答;
(2)根據(jù)線段垂直平分線的性質(zhì)和三角形的外接圓的概念解答;
(3)根據(jù)位似變換和位似中心的概念解答;
(4)根據(jù)相似三角形的對應邊的比相等,都等于相似比解答.
解:(1)如圖1,
由作圖可知△ABC外接圓的圓心坐標是(2,6),
故答案為:(2,6);
(2)作AB、BC的垂直平分線交于G,連接AG,
根據(jù)網(wǎng)格特點可知,點G的坐標為(2,6),
則AG==,
則△ABC外接圓的半徑是,
故答案為:;
(3)如圖2,連接BE、FC,
根據(jù)網(wǎng)格特點,BE與FC交于點M,
點M的坐標為(3,6),
根據(jù)位似中心的概念可知,位似中心M的坐標是(3,6),
故答案為:(3,6);
(4)由網(wǎng)格特點可知,AB=2,BC=,AC=,
∵△A1B1C1∽△ABC,且相似比為:1,
∴A1B1=2,B1C1=2,A1C1=2,
所求的△A1B1C1如圖3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且m>n.(以上長度單位:cm)
(1)用含m,n的代數(shù)式表示所有裁剪線(圖中虛線部分)的長度之和;
(2)觀察圖形,發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 ;
(3)若每塊小矩形的面積為10cm2,四個正方形的面積和為58cm2,試求(m+n)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,直線l切⊙O于A,在直線l上取點B,AB=4.
(1)請用無刻度的直尺和圓規(guī),過點B作直線m⊥l,交⊙O于C、D(點D在點C的上方);(保留作圖痕跡,不要求寫作法)
(2)求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在等邊△ABC中,D、E分別在AB、AC上,且AD=CE,BE、CD相交于點P.
(1)說明△ADC≌△CEB的理由;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知和均為等腰直角三角形,,點為的中點,過點與平行的直線交射線于點.
(1)當,,三點在同一直線上時(如圖1),求證:為的中點;
(2)將圖1中的繞點旋轉(zhuǎn),當,,三點在同一直線上時(如圖2),求證:為等腰直角三角形;
(3)將圖1中繞點旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是放在地面上的一個長方體盒子,其中AB=9cm,BC=6cm,BF=5cm,點M在棱AB上,且AM=3cm,點N是FG的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,它需要爬行的最短路程為( )
A. 10cm B. C. D. 9cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】萬圣節(jié)兩周前,某商店購進1000個萬圣節(jié)面具,進價為每個6元,第一周以每個10元的價格售出200個;隨著萬圣節(jié)的臨近,預計第二周若按每個10元的價格銷售可售出400個,但商店為了盡快減少庫存,決定單價降價x元銷售根據(jù)市場調(diào)查,單價每降低1元,可多售出100個,但售價不得低于進價;節(jié)后,商店對剩余面具清倉處理,以第一周售價的四折全部售出.
當單價降低2元時,計算第二周的銷售量和售完這批面具的總利潤;
如果銷售完這批面具共獲利1300元,問第二周每個面具的銷售價格為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC交于點D,E是BC的中點,連接BD,DE.
(1)若,求sinC;
(2)求證:DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將進貨單價為元的商品按元售出時,就能賣出個.已知這種商品每個漲價元,其銷售量就減少個,問為了賺得元的利潤,而成本價又不高于元,售價應定為多少?這時應進貨多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com