【題目】如圖,小明所在教學(xué)樓的每層高度為3.5 m,為了測量旗桿MN的高度,他在教學(xué)樓一樓的窗臺A處測得旗桿頂部M的仰角為45°,他在二樓窗臺B處測得M的仰角為31°,已知每層樓的窗臺離該層的地面高度均為1 m.
(1)AB=________m;
(2)求旗桿MN的高度.(結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】(1)3.5;(2)旗桿MN的高度為9.75 m
【解析】(1)、根據(jù)每一層的高度得出AB的長度;(2)、過點(diǎn)M的水平線交直線AB于點(diǎn)H,折MH=x,根據(jù)Rt△BMH的三角函數(shù)得出BH=0.6x,根據(jù)AB=AH-BH=0.4x得出x的值,從而得出答案.
(1)3.5;
(2)過點(diǎn)M的水平線交直線AB于點(diǎn)H.
由題意,得∠AMH=∠MAH=45°,∠BMH=31°,AB=3.5.
設(shè)MH=x,則AH=x,BH=x·tan31°=0.60x,∴AB=AH-BH=x-0.60x=0.4x=3.5,
∴x=8.75.∴MN=x+1=9.75 m.
答:旗桿MN的高度為9.75 m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,對角線AC⊥CD,點(diǎn)E在邊BC上,且∠AEB=45°,CD=10.
(1)求AB的長;
(2)求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,, 交于,是的中點(diǎn),連接并延長,交于點(diǎn),恰好是的中點(diǎn).
(1)求的值;
(2)若,求證:四邊形是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠BAD=60°,AC與BD交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=DE,連結(jié)BE分別交AC,AD于點(diǎn)F、G,連結(jié)OG,則下列結(jié)論:①OG=AB;②與△EGD全等的三角形共有5個;③S四邊形ODGF>S△ABF;④由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形.其中正確的是( 。
A.①④B.①③④C.①②③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京張高鐵是2022年北京冬奧會的重要交通保障設(shè)施. 如圖所示,京張高鐵起自北京北站,途經(jīng)清河、沙河、呂平等站,終點(diǎn)站為張家口南站,全長174千米.
(1)根據(jù)資料顯示,京張高鐵的客運(yùn)價格擬定為0. 4元(人·千米),可估計京張高鐵單程票價約為_________元(結(jié)果精確到個位);
(2)京張高鐵建成后,將是世界上第一條設(shè)計時速為350千米/時的高速鐵路. 乘高鐵從北京到張家口的時間將縮短至1小時,如果按此設(shè)計時速運(yùn)行,那么每站(不計起始站和終點(diǎn)站)停靠的平均時間是多少分鐘?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行于x軸的直線分別與一次函數(shù)y=-x+3和二次函數(shù)y= x2 -2x-3的圖象交于A(x1,y1),B(x2,y2),C(x3,y3)三點(diǎn),且x1<x2<x3,設(shè)m= x1+x2+x3,則m的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個頂點(diǎn)的坐標(biāo)分別為,,.
()請畫出將向左平移個單位長度后得到的圖形.
()請畫出關(guān)于原點(diǎn)成中心對稱的圖形
()在軸上找一點(diǎn),使的值最小,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在長方形紙片ABCD中,AB=mAD,其中m1,將它沿EF折疊(點(diǎn)E.F分別在邊AB、CD上),使點(diǎn)B落在AD邊上的點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,MN與CD相交于點(diǎn)P,連接EP.設(shè),其中0<n1.
(1)如圖2,當(dāng)n=1(即M點(diǎn)與D點(diǎn)重合),求證:四邊形BEDF為菱形;
(2)如圖3,當(dāng)(M為AD的中點(diǎn)),m的值發(fā)生變化時,求證:EP=AE+DP;
(3)如圖1,當(dāng)m=2(即AB=2AD),n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com