【題目】某電器商場(chǎng)銷售甲、乙兩種品牌空調(diào),已知每臺(tái)乙種品牌空調(diào)的進(jìn)價(jià)比每臺(tái)甲種品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購(gòu)進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購(gòu)進(jìn)的甲種品牌空調(diào)數(shù)量多2 臺(tái).
(1)求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià);
(2)該商場(chǎng)擬用不超過16000 元購(gòu)進(jìn)甲、乙兩種品牌空調(diào)共10臺(tái)進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)為2500元/臺(tái),乙種品牌空調(diào)的售價(jià)為3500元/臺(tái).請(qǐng)你幫該商場(chǎng)設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10 臺(tái)空調(diào)后獲利最大,并求出最大利潤(rùn).
【答案】
(1)解:設(shè)甲種品牌空調(diào)的進(jìn)貨價(jià)為x元/臺(tái),則乙種品牌空調(diào)的進(jìn)貨價(jià)為1.2x元/臺(tái),
根據(jù)題意得: ﹣ =2,
解得:x=1500,
經(jīng)檢驗(yàn),x=1500是原分式方程的解,
∴1.2x=1500×1.2=1800.
答:甲種品牌空調(diào)的進(jìn)貨價(jià)為1500元/臺(tái),乙種品牌空調(diào)的進(jìn)貨價(jià)為1800元/臺(tái).
(2)解:設(shè)購(gòu)進(jìn)甲種品牌空調(diào)a臺(tái),所獲得的利潤(rùn)為y元,則購(gòu)進(jìn)乙種品牌空調(diào)(10﹣a)臺(tái),
根據(jù)題意得:1500a+1800(10﹣a)≤16000,
解:a≥ .
∵a≤10,且a為正整數(shù),
∴a=7,8,9,10.
∵y=(2500﹣1500)a+(3500﹣1800)(10﹣a)=﹣700a+17000,其中k=﹣700<0,
∴y的值隨著a的值的增大而減小,
∴當(dāng)a=7時(shí),y取得最大值,此時(shí)y=﹣7×700+17000=12100.
答:進(jìn)貨方案為:購(gòu)進(jìn)甲種空調(diào)7臺(tái),乙種空調(diào)3臺(tái),可獲得最大利潤(rùn),最大利潤(rùn)為12100元.
【解析】(1)設(shè)甲種品牌空調(diào)的進(jìn)貨價(jià)為x元/臺(tái),則乙種品牌空調(diào)的進(jìn)貨價(jià)為1.2x元/臺(tái),根據(jù)數(shù)量=總價(jià)÷單價(jià)可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論;(2)設(shè)購(gòu)進(jìn)甲種品牌空調(diào)a臺(tái),所獲得的利潤(rùn)為y元,則購(gòu)進(jìn)乙種品牌空調(diào)(10﹣a)臺(tái),根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總價(jià)不超過16000 元,即可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤(rùn)=單臺(tái)利潤(rùn)×購(gòu)進(jìn)數(shù)量即可得出y關(guān)于a的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.
【考點(diǎn)精析】掌握分式方程的應(yīng)用是解答本題的根本,需要知道列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=30°,OC平分∠AOB,在OA上有一點(diǎn)M,OM=10 cm,現(xiàn)要在OC,OA上分別找點(diǎn)Q,N,使QM+QN最小,則其最小值為________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在菱形ABCD中,∠A=60°,AB=2,E,F(xiàn)兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),以相同的速度分別向終點(diǎn)B,C移動(dòng),連接EF,在移動(dòng)的過程中,EF的最小值為( 。
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點(diǎn)A在x軸上,OA=4,OC=3,點(diǎn)D為BC邊上一點(diǎn),以AD為一邊在與點(diǎn)B的同側(cè)作正方形ADEF,連接OE.當(dāng)點(diǎn)D在邊BC上運(yùn)動(dòng)時(shí),OE的長(zhǎng)度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長(zhǎng)為( )
A.1.8
B.2.4
C.3.2
D.3.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有( )
A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.
(1)如圖,當(dāng)α=60°時(shí),延長(zhǎng)BE交AD于點(diǎn)F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請(qǐng)直接寫出BE的長(zhǎng);
(2)在旋轉(zhuǎn)過程中,過點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年1月20日,山西迎來了“復(fù)興號(hào)”列車,與“和諧號(hào)”相比,“復(fù)興號(hào)”列車時(shí)速更快,安全性更好.已知“太原南﹣北京西”全程大約500千米,“復(fù)興號(hào)”G92次列車平均每小時(shí)比某列“和諧號(hào)”列車多行駛40千米,其行駛時(shí)間是該列“和諧號(hào)”列車行駛時(shí)間的(兩列車中途停留時(shí)間均除外).經(jīng)查詢,“復(fù)興號(hào)”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐“復(fù)興號(hào)”G92次列車從太原南到北京西需要多長(zhǎng)時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com